2. wissenschaftlicher Bericht

Vorbereitung und Begleitung bei der Erstellung eines Erfahrungsberichts gemäß § 99 Erneuerbare-Energien-Gesetz

Teilvorhaben: Geothermie
Inhaltsverzeichnis

1. ZUSAMMENFASSUNG .. 9
2. EINLEITUNG .. 10
 2.1. Herangehensweise ... 10
 2.2. Einleitung Geothermie ... 12
 2.2.1. Begriffslehre .. 12
 2.2.2. Stand der Technik .. 14
 2.2.3. Technische Herausforderungen und Lösungen ... 36
 2.2.4. Entwicklungstendenzen .. 44
3. MARKTENTWICKLUNG .. 45
 3.1. Deutschland ... 45
 3.1.1. Realisierter Ausbau ... 45
 3.1.2. Potenziale Tiefer Geothermie .. 47
 3.1.3. Marktreife für Deutschland ... 61
 3.2. International ... 70
 3.2.1. Weltweit .. 70
 3.2.2. Europa ... 73
4. INSTRUMENTE ZUR MARKTSTEUERUNG ... 75
 4.1. Entwicklung und Anpassungen des EEG .. 75
 4.1.1. EEG 2023 und EEG 2021 .. 76
 4.2. Weitere Steuerungsinstrumente ... 78
 4.2.1. Rechtliche Rahmenbedingungen .. 78
 4.2.2. Förderung .. 82
5. ÖKONOMISCHE ASPEKTE .. 85
 5.1. Anlagenbezogene Kosten ... 86
 5.2. Kosten der Stromerzeugung ... 86
 5.2.1. Kostensteigerung in allen Bereichen ... 86
 5.2.2. Kostensenkung ... 87
 5.3. Ermittlung der Stromgestehungskosten .. 87
 5.4. Vermarktungsmöglichkeiten und Marktinintegration .. 92
 5.5. Besonderheiten der Geothermie .. 93
 5.5.1. Kraft-Wärme-Kopplung .. 93
 5.5.2. Kaskadennutzung ... 94
 5.5.3. Geothermische Lithiumgewinnung ... 94
6. WEITERE ASPEKTE ... 99
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.</td>
<td>Ökologische Aspekte</td>
<td>99</td>
</tr>
<tr>
<td>6.1.1.</td>
<td>Emissionsbilanz</td>
<td>99</td>
</tr>
<tr>
<td>6.1.2.</td>
<td>Lokale Umwelteffekte</td>
<td>102</td>
</tr>
<tr>
<td>6.2.</td>
<td>Akzeptanz</td>
<td>108</td>
</tr>
<tr>
<td>6.3.</td>
<td>Sonstige Aspekte</td>
<td>112</td>
</tr>
<tr>
<td>7.</td>
<td>HANDLUNGSEMPFEHLUNGEN</td>
<td>114</td>
</tr>
<tr>
<td>7.1.</td>
<td>EEG-spezifisch</td>
<td>114</td>
</tr>
<tr>
<td>7.2.</td>
<td>Allgemein</td>
<td>115</td>
</tr>
<tr>
<td>8.</td>
<td>LITERATURVERZEICHNIS</td>
<td>118</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Abs.</td>
<td>Absatz</td>
<td></td>
</tr>
<tr>
<td>AEE</td>
<td>Agentur für Erneuerbare Energien</td>
<td></td>
</tr>
<tr>
<td>AFPG</td>
<td>Association Francaise des Professionnels de la Geothermie</td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
<td></td>
</tr>
<tr>
<td>ARENA</td>
<td>Australian Renewable Energy Agency</td>
<td></td>
</tr>
<tr>
<td>BAFA</td>
<td>Bundesamt für Wirtschaft und Ausfuhrkontrolle</td>
<td></td>
</tr>
<tr>
<td>BauGB</td>
<td>Baugesetzbuch</td>
<td></td>
</tr>
<tr>
<td>Bay. Mol.</td>
<td>Bayerisches Molassebecken</td>
<td></td>
</tr>
<tr>
<td>BBergG</td>
<td>Bundesberggesetz</td>
<td></td>
</tr>
<tr>
<td>BEW</td>
<td>Bundesförderung für effiziente Wärmennetz</td>
<td></td>
</tr>
<tr>
<td>BGR</td>
<td>Bundesanstalt für Geowissenschaften und Rohstoffe</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>Bürgerinitiative</td>
<td></td>
</tr>
<tr>
<td>BImSchG</td>
<td>Bundesimmissionsschutzgesetz</td>
<td></td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz</td>
<td></td>
</tr>
<tr>
<td>BMWK</td>
<td>Bundesministerium für Wirtschaft und Klimaschutz</td>
<td></td>
</tr>
<tr>
<td>BOP</td>
<td>Blow-Out-Preventer</td>
<td></td>
</tr>
<tr>
<td>bspw.</td>
<td>beispielsweise</td>
<td></td>
</tr>
<tr>
<td>BVG</td>
<td>Bundesverband Geothermie</td>
<td></td>
</tr>
<tr>
<td>BVOT</td>
<td>Bergverordnung für Tiefbohrungen, Untergrundspeicher und für die Gewinnung von Bodenschätzen durch Bohrungen</td>
<td></td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
<td></td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
<td></td>
</tr>
<tr>
<td>CRI</td>
<td>Commercial Readiness index</td>
<td></td>
</tr>
<tr>
<td>DAS</td>
<td>Distributed Acoustic Sensing</td>
<td></td>
</tr>
<tr>
<td>DHM</td>
<td>Deep Heat Mining</td>
<td></td>
</tr>
</tbody>
</table>
EEG Erneuerbare-Energien-Gesetz
EEWärmeG Erneuerbare-Energien-Wärmegesetz
EGS Enhanced Geothermal System (Engineered Geothermal System)
EIV Elektro-Impuls-Verfahren
EMS European Macroseismic Scale
EPDM Ethylen-Propylen-Dien-(Monomer)-Kautschuk
ESP Electric-Submersible-Pump
etc. et cetera
EU Europäische Union
F&E Forschung und Entwicklung
FKPE Forschungskollegium Physik der Erde
FKW fluorierte Kohlenwasserstoffe
GAB Geothermie Allianz Bayern
GEC-CO Global Engineering & Consulting-Company GmbH
GeoIDG Geologiedatengesetz
GRE Glass Reinforced Epoxy
GWR Gas-Wasser-Verhältnis
HDR Hot Dry Rock
HFKW halogenierte Fluorkohlenwasserstoffe
HWR Hot Wet Rock
i. d. R. in der Regel
i. S. v. im Sinne von
i. V. m. in Verbindung mit
INEA Exekutivagentur für Innovation und Netze der EU
KfW Kreditanstalt für Wiederaufbau
KMU kleine und mittlere Unternehmen
LIAG Leibniz-Institut für Angewandte Geowissenschaften
LSP Line-Shaft-Pump
MMW Millimeterwave (-Bohrsysteme)
MTD Micro Turbine Drilling
NBR Acrylnitril-Butadien-Kautschuk
NCG Non Condensable Gases
NDB Norddeutsches Becken
NORM Naturally Occurring Radiative Material
ORC Organic Rankine Cycle
ORG Oberrheingraben
PI Produktivitätsindex
sog. sogenannt
SPS speicherprogrammierbare Steuerung
StandAG Standortauswahlgesetz
StrSchG Strahlenschutzgesetz
StrSchV Strahlenschutzverordnung
T1/2 Halbwertszeit
TAB Büro für Technikfolgenabschätzung des Bundestages
TD Topdrive
THM Thermo-Hydro-Mechanisch
TKP Tauchkreiselpumpe
TRL Technology Readiness Level
TUM Technische Universität München
u. v. m. und vieles mehr
ÜNB Übertragungsnetzbetreiber
UVP Umweltverträglichkeitsprüfung
UVP-V Bergbau Verordnung über die Umweltverträglichkeitsprüfung bergbaulicher Vorhaben
WHG Wasserhaushaltsgesetz
Abbildungsverzeichnis

Abbildung 1: Schema Thermalwassersystem ohne Fernwärmeauskopplung .. 21
Abbildung 2: Schema Förderpumpe .. 25
Abbildung 3: Schema Kalina Stromerzeugungsprozess ... 29
Abbildung 4: Schema ORC-Stromerzeugungsprozess ... 31
Abbildung 5: Zusammenhang und Einflussfaktoren auf definitorische Potenzialbegriffe 49
Abbildung 6: Gesamtübersicht der Flächenberechnungen zur Potenzialermittlung 57
Abbildung 7: Zusammenhang zwischen Technology Readiness Levels (TRL) und Commercial Readiness Index (CRI) ... 62
Abbildung 8: Evaluierung des Marktes für hydrothermale Tiefe Geothermie in Deutschland 67
Abbildung 9: Evaluierung der Versicherungssituation in Deutschland ... 69
Abbildung 10: Anlagen zur geothermischen Stromerzeugung weltweit 72
Abbildung 11: Anzahl der installierten Kraftwerke nach Ländern .. 73
Abbildung 12: Karte der Erdbebenzonen in Deutschland .. 80
Abbildung 13: Zeitliche Entwicklung Stromgestehungskosten ... 90
Abbildung 14: Investitionskostenverteilung .. 91
Abbildung 15: Investitionskosten Bohrungen ... 91
Abbildung 16: Lokale Umwelteffekte eines Geothermie-Projekts. ... 102
Abbildung 17: Akzeptanzschema nach TIGER .. 110
Abbildung 18: Wahrgenommene Nachteile Tiefer Geothermie nach TIGER 111
Abbildung 19: Wahrgenommene Vorteile Tiefer Geothermie nach TIGER 111
Tabellenverzeichnis

Tabelle 1: Kategorien hydrothermaler Lagerstätten ... 13
Tabelle 2: Tiefe Geothermie-Kraftwerke in Deutschland, Stand 2022 ... 46
Tabelle 3: Technisches Potenzial der hydrothermalen Geothermie in Deutschland nach TAB ... 49
Tabelle 4: Technisches Potenzial der petrothermalen Geothermie in Deutschland nach TAB ... 50
Tabelle 5: Theoretisches Potenzial nach GAB-Studie 2017 .. 51
Tabelle 6: Technisches Potenzial nach GAB-Studie 2017 .. 52
Tabelle 7: Vergleich zwischen Originalstudie der GAB 2017 und Review-Version 2020 53
Tabelle 8: Technische Angebotspotenzial für eine Wärmebereitstellung aus hydrothermalen Systemen ... 58
Tabelle 9: Technisches Bereitstellungspotenzial für eine Wärmeversorgung aus hydrothermalen Systemen ... 59
Tabelle 10: Technisches Angebotspotenzial für eine Wärmebereitstellung aus petrothermalen Systemen ... 59
Tabelle 11: Technisches Bereitstellungspotenzial für eine Wärmeversorgung aus petrothermalen Systemen ... 60
Tabelle 12: Technische Abnahmepotenzial .. 60
Tabelle 13: Technische Bereitstellungspotenziale ... 60
Tabelle 14: Führende Länder bei geothermischer Stromproduktion ... 71
Tabelle 20: Einspeisevergütung und anzulegender Wert nach dem EEG 2021 77
Tabelle 22: Angefragte Geothermieanlagen ... 87
Tabelle 23: Berechnungsgrundlagen Stromgestehungskosten ... 88
Tabelle 24: Nutzungsdauer der Anlagenkomponenten .. 89
Tabelle 25: Primärenergiebezogene Emissionsfaktoren der geothermischen Stromerzeugung ... 100
Tabelle 20: Emissionsbilanz geothermischer Stromerzeugung ... 101
Tabelle 21: Emissionsbilanz geothermischer Wärmeproduktion .. 101
Tabelle 29: Kurzform der Europäischen Makroseismischen Skale nach GFZ Potsdam 105
1. Zusammenfassung

Der wissenschaftliche Endbericht des Teilvorhabens Geothermie beschreibt zunächst die technischen Grundlagen und Besonderheiten der Geothermie, befasst sich mit deren Marktentwicklung und betrachtet u. a. das Potenzial des Erneuerbaren-Energien-Gesetzes in der Fassung von 2021 und die Einspeisevergütung als Instrumente der Marktsteuerung.

Nachdem ausgewählte ökologische Aspekte geothermischer Stromerzeugung im sechsten Kapitel betrachtet werden, schließt der Endbericht mit EEG-spezifischen und allgemeinen Handlungsempfehlungen ab, die aus Sicht der Verfasser dazu führen können, den Ausbau der Tiefen Geothermie weiter voranzutreiben.

The closing report of the geothermal subproject first describes the technical fundamentals and special features of geothermal energy, deals with its market development and considers, among other things, the potential of the Renewable Energy Sources Act in the version of 2021 and the feed-in tariff as instruments of market control.

In the examination of the economic aspects, the focus is initially on the costs of geothermal energy: plant-related costs as well as electricity generation and electricity production costs are examined. With regard to the possibilities of marketing and market integration, the increased interest in deep geothermal energy triggered by the current energy crisis is also taken into account, and the contribution that deep geothermal energy can make to decarbonization through the extraction of lithium from thermal water is addressed.

When considering the economic characteristics of geothermal power, in addition to the possibilities of combined heat and power and cascade utilization, lithium extraction in connection with geothermal power is once again discussed in more detail and both technical aspects and the status and potential of the lithium market are described.

After selected ecological aspects of geothermal power generation are considered in the sixth chapter, the interim report concludes with EEG-specific and general recommendations for action which, in the view of the authors, can lead to further advancement of the expansion of deep geothermal energy.
2. Einleitung

2.1. Herangehensweise

Nach dieser technisch orientierten Einführung in den Themenkomplex Geothermie, wird in Kapitel 3 die Marktentwicklung geothermischer Stromerzeugung in den Fokus gerückt. Dabei wird zunächst ausführlich der deutsche Markt untersucht, bevor anschließend auch der globale Markt (europäische,
wie außereuropäisch) beleuchtet wird. Neben der aktuellen Marktlage sowie Marktreife, die Überblick über den bisherigen sowie bereits geplanten Ausbau geben, wird auch das Potenzial geothermischer Stromerzeugung aufgezeigt und ein Abgleich zwischen Potenzial und Ausbau (Kann-Ist-Vergleich) durchgeführt.

Kapitel 6 beleuchtet vor allem ökologische Aspekte wie den Klima- und Umweltschutz sowie gesellschaftliche Fragen rund um das Thema Akzeptanz, das wie bei jeder Technologie-Nutzung entscheidend für den langfristigen Erfolg der Geothermie ist.

Die Geothermie ist eine vielseitig einsetzbare Technologie und hat neben der Stromproduktion weitere Einsatzmöglichkeiten. Aus diesem Grund soll nochmals klar der Geltungsbereich dieses Berichts skizziert werden: Da das EEG 2021 (ebenso wie die Vorgängerversionen) selbst in seinem Geltungsbereich auf die Stromproduktion aus Erneuerbaren Energien beschränkt ist, gilt gleicher Grundsatz auch für diesen Bericht. Konkret bezieht sich dieser Bericht also speziell auf tiefengeothermische Kraftwerke zur reinen Stromproduktion sowie Heizkraftwerke zur kombinierten Strom- und Wärmeproduktion. Um dennoch das Gesamtbild der flexiblen Erneuerbaren Energie Geothermie sowie die sich ergebenden Wechselwirkungen nicht aus dem Blick zu verlieren, wird an geeigneter Stelle auch auf weitere Nutzungsmöglichkeiten der tiefen Geothermie, wie vor allem die Bereitstellung von Wärme und Kälte sowie die Lithiumgewinnung eingegangen.

2.2. Einleitung Geothermie

Nach dieser ziel- und methodenbasierten Rahmensetzung des vorliegenden Berichts wird in diesem Kapitel eine technische Einführung in den Bereich der geothermischen Stromerzeugung sowie die aktuellen Entwicklungstendenzen der Technologie vorgenommen

2.2.1. Begriffslehre

Während oberflächennahe Geothermie den Untergrund bis zu einer Tiefe von ca. 400 Metern erschließt und dabei zur Bereitstellung von Wärme und Kühlenergie mittels Sorptionsanlagen genutzt wird, ist in Deutschland mittels tiefer Geothermie sowohl Wärmennutzung als auch Stromproduktion möglich. Hierfür werden Lagerstätten erschlossen, die tiefer als 400 Meter unter Geländeoberkante liegen und nach zwei Dimensionen unterschieden werden. Die erste Unterscheidung ist über die Temperatur definiert und gliedert sich in Nieder-, Mittel- und Hochenthalpie-Lagerstätten. Während sich entlang der unterschiedlichen Temperaturniveaus vor allem auch die technische Möglichkeit sowie der Grad der Wirtschaftlichkeit verschiedener
Nutzungszwecke tiefer Geothermie (Wärme, Strom) ableiten, bezieht sich die zweite Unterscheidung auf die Beschaffenheit der genutzten Lagerstätte. Hier wird unterschieden in hydrothermale und petrothermale Tiefengeothermie (vgl. Bassier 2013).

Tabelle 1: Kategorien hydrothermaler Lagerstätten (vgl. www.geothermie.de)

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Temperatur</th>
<th>Porosität</th>
<th>Recovery Faktor</th>
<th>Beispiele weltweit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heißwasser gepumpt</td>
<td>< 150°C</td>
<td>15 – 30 %</td>
<td>10 %</td>
<td>alle deutschen Anlagen</td>
</tr>
<tr>
<td>Heißwasser artesisch</td>
<td>< 220°C</td>
<td>15 – 30 %</td>
<td>10 %</td>
<td>Beowave</td>
</tr>
<tr>
<td>Zweiphasen, flüssigkeitsdominiert Niederenthalpie</td>
<td>220 – 250°C</td>
<td>15 – 30 %</td>
<td>20 – 30 %</td>
<td>Miravalles, Ngawha</td>
</tr>
<tr>
<td>Zweiphasen, flüssigkeitsdominiert Mittelenthalpie</td>
<td>250 – 300°C</td>
<td>6 – 10 %</td>
<td>20 – 25 %</td>
<td>Amatitlan, Ohaari</td>
</tr>
<tr>
<td>Zweiphasen, flüssigkeitsdominiert Hochenthalpie</td>
<td>250 – 330°C</td>
<td>6 – 10 %</td>
<td>10 – 17 %</td>
<td>Mindano, Kakkonda</td>
</tr>
<tr>
<td>Zweiphasen, dampforientiert</td>
<td>250 – 330°C</td>
<td>8 – 12 %</td>
<td>8 – 12 %</td>
<td>Tongonan, Dajarat</td>
</tr>
</tbody>
</table>

2.2.2. Stand der Technik

2.2.2.1. Untertage

2.2.2.1.1. Bohranlage

2.2.2.1.2. Bohrplatz

2.2.2.1.3. Bohrmast

2.2.2.1.4. Hebesystem
2.2.2.1.5. Pipehandling-System

2.2.2.1.6. Drehisch

2.2.2.1.7. Topdrive

2.2.2.1.8. Spülungssystem
Das Bohrklein, also das vom Bohrmeißel abgetragene Gestein, wird über eine Spülung aus dem Bohrloch transportiert. Obertäglich wird die Spülung an die projektsspezifischen Bohrloch-Bedingungen angepasst und mittels eigener Spulpumpen in den Bohrstrang eingebracht. Spezielle Düsen am Bohrmeißel leiten die Spülung bis zum Bohrlochtiefsten (beschreibt die Länge der Bohrung, nicht die vertikale Tiefe), wo sie mehrere Aufgaben erfüllt: Neben dem Abtransport des Bohrkleins über den Ringraum, lockert die Spülung das Gestein, kühlt und schmiert den Meißel, stabilisiert die Bohrung, erzeugt hydraulischen Gegendruck gegen das Eindringen von Medien aus den durchteuften Formationen in das Bohrloch und überträgt Energie gegebenenfalls zur Bohrlochsohle zum Betrieb eines Meißeldirektantriebs. An der Oberfläche wird die Spülung über Schüttelsiebe, Zentrifugen und Zyklopen wieder aufbereitet und erneut dem zirkulierenden System zugeführt.

17

Attapulgit- und Öl-Spülungen zum Einsatz kommen, die vor allem bei hohen Temperaturen geeignet sind. Insbesondere die Öl- bzw. Formiatspülungen haben allerdings eine erhebliche Verunreinigung wasserführender Schichten zur Folge und sind daher mit hohen Umweltauflagen verbunden (vgl. Bauer et al. 2014)

2.2.2.1.9. Blow-out-Preventer

2.2.2.1.10. Bohrstrang

2.2.2.1.11. Bohrwerkzeug

Rollenmeißel sind typischerweise als Drei-Kegel-Rollenmeißel mit gehärteten Stahlzähnen oder Warzenmeißel mit Wolframkarbideinsätzen ausgeführt, wobei Teile des Gesteins durch die Kegelrollen über Druck- und Scherkkräfte herausgelöst werden. Die maximale Einsatz-Temperatur von Rollenmeißeln liegt bei ca. 250 °C.
Demgegenüber kann ein Diamantmeißel je nach Ausführung bei Temperaturen von bis zu 700 °C eingesetzt werden. Durch höhere Drehzahlen und längere Standzeiten erweisen sich Diamantmeißel trotz höherer Anschaffungskosten über den gesamten Bohrvorgang teils als die kostengünstigere Alternative zum Rollenmeißel.

2.2.2.1.12. Meißeldirektantrieb
Neben einer obertägigen Induktion der Meißeldrehbewegung, kann auch ein Meißeldirektantrieb eingesetzt werden, welcher die Rotation und Kraftübertragung direkt am Bohrmeißel auslöst. Dieser Antrieb wird durch die Bohrspülung betrieben und hat diverse Vorteile. So ermöglicht diese untertägige Antriebstechnik das sogenannte Richtbohren, also die gezielte Veränderung des Bohrverlaufs in jede Richtung. Außerdem reduzieren sich die Reibungsverluste zwischen Gebirge und Bohrstrang, da dieser nicht mehr die komplette Drehung übertragen muss, sondern nur noch zur Kraftübertragung eingesetzt wird. Derzeit sind zwei unterschiedliche Varianten des Meißeldirektantriebs am Markt: Bohrturbinen und Verdrängermotoren.

Bohrturbinen bestehen aus hintereinandergeschalteten Leit- und Laufrädern und werden häufig mit Diamantmeißel eingesetzt. Während die Leiträder fest am Turbinengehäuse fixiert sind, werden die Laufräder durch die Spülung angetrieben, wodurch der Kraftübertrag auf den Meißel stattfindet.

2.2.2.1.13. Verrohrung und Komplettierung

2.2.2.14. Neue Bohrverfahren

2.2.2.2. Übertägige Anlage

2.2.2.2.1. Thermalwasserkreislauf
2.2.2.2.1.1. Rohrleitungssystem

Je nach chemisch-physikalischen Spezifika des Thermalwassers und der darin enthaltenen Elemente (H₂S, Cl, NaCl, etc.) werden typischerweise Kohlenstoffstähle (Güteklassen: P235GH oder P355GH), vollaustenitische Stähle (1.4539) und Duplexstähle (1.4462) verwendet. Kostengünstigere austenitische Stähle (1.4301, 1.4571 etc.) können wegen der auftretenden Spannungs-Risskorrosion nur unter bestimmten Voraussetzungen eingesetzt werden. Beide Varianten (sowohl Kohlenstoffstahl als auch Duplexstahl) haben in den bereits bestehenden Stromprojekten im Bundesgebiet Anwendung gefunden. Während bei nicht dauerfesten Stählen und normalem Verschleiß ein Rohrleitungssystem auf 20 bis 25 Jahre zu dimensionieren ist, können dauerfeste Stähle beinahe unbegrenzt genutzt werden und müssen keine Korrosionszuschläge einkalkulieren (vgl. ebd.).

2.2.2.2.1.2. Filteranlagen
2.2.2.2.1.3. Druckhaltung

2.2.2.2.1.4. Injektionspumpe

2.2.2.2.1.5. Thermalwassermonitoring

2.2.2.2.2. Förderpumpen
Das Thermalwasser wird über Förderpumpen aus dem natürlichen Reservoir an die Oberfläche gefördert. In den Anwendungsbereichen der Öl- und Gasindustrie hat sich dabei eine Vielzahl an verschiedenen Systemen herausgebildet. Während Pferdekopfpumpen nach dem Kolbenprinzip oder

Sowohl Gestänge- aus auch Tauchkreiselpumpen gehören zur Gruppe der Strömungspumpen, welche die durch rotierende Laufräder (Impeller) entwickelten Fliehkräfte zur Förderung nutzen. Dabei werden mehrere Impeller in Reihe geschaltet. Durch diesen mehrstufigen Aufbau wird der benötigte Druck zur Überwindung der Durchflusswiderstände erreicht.

Zur Ermittlung des Leistungsbedarfs an der Welle der Thermalwasserpumpe wird folgende Formel (1) genutzt:

\[
P_{Welle} [W] = \frac{\rho \cdot g \cdot Q \cdot H}{\eta}
\]

(1)

\(P\): Wellenleistung
\(\rho\): Dichte Fördermedium
\(g\): Fallbeschleunigung
\(Q\): Förderrate
\(H\): Förderhöhe
\(\eta\): Wirkungsgrad der Pumpe

Zur Berechnung des Leistungsbedarfs müssen daher Wirkungsgrad und Produktivitätsindex (PI) der Bohrung bekannt sein, wobei der PI die Förderrate in Abhängigkeit von der Druckabsenkung beschreibt (2):

\[
PI \left[\frac{m^3}{s \times MPa} \right] = \frac{Q \cdot \frac{m^3}{s}}{s \times [MPa]}
\]

(2)

\(PI\): Produktivitätsindex
\(Q\): Förderrate
2.2.2.2.1. Electrical submersible Pump (ESP)

Theoretisch kann ESP in allen Tiefen eingesetzt werden. In der Kohlenwasserstoffindustrie werden Anlagen in Tiefen von bis zu mehreren Kilometern installiert. Hohe Temperaturen wirken sich jedoch dramatisch auf die Lebensdauer der Pumpe aus. Dies liegt unter anderem an der begrenzten thermischen Stabilität bestimmter Motorkomponenten (hauptsächlich Polymermaterialien), die bei hohen Umgebungsbedingungen eine begrenzte Lebensdauer haben und daher aufgrund unzureichender Kühlung vorzeitig ausfallen können. Da die Installation untertage und im Thermalwasser erfolgt (10m Wassersäule entsprechen ca. 1 bar bei 20 °C), sind ein absolut dichter Motor und dichte spannungsführende Teile erforderlich.

Trotz dieser bedingten Eignung werden in allen Projekten zur Stromerzeugung in der bayerischen Molasse Tauchkreiselpumpen verwendet.

2.2.2.2.2. Line Shaft Pump (LSP)

Im Oberrheingraben hingegen werden Gestängepumpen verwendet, da sich ESP-Systeme durch höhere Temperaturen und eine andere chemische Zusammensetzung des Thermalwassers noch schwieriger einsetzen lassen. Auch durch die typischerweise höhere Lage des Ruhewasserspiegels wird hier der Einsatz eines LSP-Systems begünstigt.

Bei der LSP sind der an der Oberfläche installierte Motor und die unterirdisch verbaute Hydraulik durch eine Welle verbunden. Weil sich Motor und Axiallager zur Aufnahme der Last der Welle an der Erdoberfläche befinden, kann die robuste Pumpe auch bei hohen Thermalwassertemperaturen gut arbeiten. Die maximale Einbautiefe der Pumpe im benötigten Leistungsbereich liegt derzeit systembedingt noch bei ca. 600m.

2.2.2.2.2.3. Wirkungsgradsteigerungen
Beide beiden Pumpensystemen sind die elektrischen und mechanischen Wirkungsgrade im niedrigen Bereich. Während bei der ESP die konstruktive Ausführung von Hydraulik und Motor als Hauptgründe dafür zu nennen sind, machen sich bei der LSP neben dem langen Antriebsstrang auch die großen Abstände zwischen Gehäuse/Leitrad und Laufrad als sogenannte Spaltverluste bemerkbar. Insgesamt aber liegen die Wirkungsgrade bei der LSP dank des überdämmten installierten Motors höher als bei der ESP.

Bei beiden Systemen ist der jeweilige Gesamtwirkungsgrad deutlich steigerungsbedürftig. Wie groß hier das Potenzial ist, zeigt folgendes Beispiel: Unter der Annahme einer Effizienzsteigerung von 65% auf 66% (ESP), kann dies bei einer Förderrate von 100 l/s und einer Gesamtförderhöhe von 500 m beispielsweise eine Energieeinsparung von rund 99,6 MWh pro Jahr bewirken (vgl. GEC-CO 2019).

2.2.2.2.2.4. Weiterer Optimierungsbedarf für tiefengeothermische Anwendung
Um die Pumpen auf spezifische tiefengeothermische Anforderungen wie große Volumenströme und hohe Förderhöhen und Temperaturen hin zu optimieren, gab es in der Vergangenheit bereits mehrere Forschungsvorhaben. Technische Entwicklungen haben gezeigt, dass Anpassungen hinsichtlich Materialwahl, Lagergestaltung und Sensorik prinzipiell möglich sind. Die Branche sieht die derzeitige Situation für große Förderpumpen (Förderleistungen > 100 l/s) allerdings nach wie vor kritisch, da es faktisch nur einen Lieferanten je Pumpentyp gibt. Bemühungen seitens der Branche zur Förderung eines weiterenLieferanten sind bisher fruchtlos verlaufen, da Marktteilnehmer teilweise unterschiedliche Strategien zur Lösung des Problems verfolgen. Im Bereich der deutschen geothermischen Stromerzeugung ist der Markt seitens der Abnehmer zu klein und zu instabil, als dass ein zweiter Hersteller derzeit ernsthaft in Erwägung zieht die notwendigen Forschungs- und Entwicklungsarbeiten auf sich zu nehmen. Dies wäre jedoch zwingend notwendig. Konkrete Ansatzpunkte hierfür sind u. a.:

- Weiterentwicklung zur Verbesserung von Verlässlichkeit und Effizienz der zur Fluidförderung genutzten Tiefpumpen für unterschiedliche Standortbedingungen.
- Entwicklung herstellerunabhängig kombinierbarer Pumpenkomponenten.
- Monitoring der Fluidförderung und der Fluidparameter u. a. mit Tracer-Experimenten.
• Entwicklung von Methoden zur Überwachung des Langzeitverhaltens der Bohrlochkomplettierungen und der Bohrungsintegrität zum absoluten Grundwasserschutz

2.2.2.2.3. Kraftwerk

2.2.2.2.3.1. Kalinaprozess

Die einzelnen Schritte des Kalinaprozesses nach Abb. 2:

Am Punkt (1) Kondensatoraustritt befindet sich die Grundlösung im unteren Prozessdruck. Die Speisepumpe (1 -> 2) bringt die Grundlösung vom unteren Prozessdruck auf den oberen Prozessdruck. Von 2 -> 3 wird die Grundlösung mit der im Vorwärmer freierwerdenden Wärme vorgewärmt (hier bewegt sich die Grundlösung von 9 -> 10, der nicht nutzbare Anteil der Wärme wird im Kondensator an die Umgebung abgeführt (10 -> 1). In der zweiten Stufe der regenerativen Speisewasservorwärmung wird im Rekuperator die Wärme der warmen, ammoniakarmen Lösung (diese bewegt sich von 5' -> 7) für die weitere Vorwärmung der Grundlösung genutzt. Am Verdampferaustritt (5) liegt ein Zweiphasengemisch vor, das im Separator in ammoniakarme Flüssigkeit (5') und ammoniakreichen Dampf (5") getrennt wird. Der ammoniakreiche Dampf entspannt sich in der Turbine bis auf den unteren Prozessdruck und bis zu einer maximalen Feuchte (6). Die ammoniakarme Flüssigkeit entspannt sich in einer Drossel (7 -> 8), nachdem sie im Rekuperator Wärme zur Vorwärmung der Grundlösung abgegeben hat.

Die Anlagentechnik für Kalina-Anlagen ist prozessbedingt überdurchschnittlich aufwendig und teuer. Auch ein höherer Materialaufwand zum Kreislaufbetrieb wurde durch die Erfahrungen aus den

Die Einsatzmöglichkeit neu entwickelter Arbeitsmittel z. B. R1233... und R1234... für ORC-Kraftwerke, baut außerdem die Nachteile der ORC-Anlage gegenüber Kalinaprozessen sukzessive ab, wodurch der wirtschaftlich technische Einsatzbereich, in dem Kalina-Kraftwerke einen Vorteil haben, weiter abnimmt. Insgesamt ist daher anzunehmen, dass sich der Trend verstetigt und keine neuen Kalina-Kraftwerke mehr ans Netz gehen – weder in Deutschland noch weltweit.

2.2.2.2.3.2. Organic Rankine Cycle (ORC)
Prinzipiell kommen für den ORC-Prozess unterschiedliche Arbeitsmittel in Frage. Vor dem Hintergrund des komplexen Anforderungshorizonts zwischen optimaler Energieumwandlung mit maximalem Wirkungsgrad und größtmöglicher Umweltverträglichkeit werden in Niederenthalpie-Anwendungen wie in Deutschland typischerweise Kältemittel in Form halogenierter Fluorkohlenwasserstoffe bzw. fluorierter Kohlenwasserstoffe (HFKW/FKW) oder brennbare Kohlenwasserstoffe eingesetzt.

Wegen signifikanten Treibhausgaseffekten durch fluorierte Treibhausgase (F-Gase) ergeben sich aus der EU-Verordnung Nr. 517/2014 wesentliche Pflichten für Anlagenbetreiber:

- Regelmäßige Kontrolle auf Leckage der ORC-Anlage
- Leckwarnsystem
- Feststellung des Inhalts an Kältemittel in der ORC-Anlage
- Jährliche Berichterstellung über Kältemittel

Typische eingesetzte Arbeitsmittel in ORC-Anlagen sind folgende:

FKW/ HFKW

- R134a (1,1,1,2 Tetrafluorethan)
- R245fa (1,1,1,3,3 Pentafluorpropan)
Brennbare Kohlenwasserstoffe

- R600a (Isobutan)
- R601a (Isopentan)

2.2.2.2.3.3. Rückkühlung des Arbeitsmittels

Nasskühlung

Anders als in großen konventionellen Kraftwerken, wird in der geothermischen Stromproduktion üblicherweise nicht mit Naturzugkühltürmen, sondern mit Zwangsdurchströmung (Anlagen mit Ventilatoren) gearbeitet. Dabei können sowohl offene als auch geschlossene Kreisläufe eingesetzt werden.

Im Gegensatz dazu wird beim offenen Kühlkreislauf Wasser mit einer großen Oberfläche (Füllkörper, Waben etc.) versprüht und verdunstet. Das nicht verdunstete kühleres Wasser läuft in die Auffangwanne am Boden der Anlage und wird über Pumpen wieder dem Kondensator zugeführt. Zwar erfordern hier die gleichen Verdunstungs- und Mineralisierungseffekte einen regelmäßigen

Hybridkühlung

Luftkondensator

2.2.2.3.4. Turbosatz

2.2.2.2.3.5. Wärmetauscher
Um dem geförderten Thermalwasser die Wärme zu entziehen und auf das Arbeitsmittel (bei Wärmeprojekten auf das Fernwärmenwasser) zu übertragen, werden Wärmetauscher eingesetzt, wobei sowohl auf Platten- als auch auf Rohrbündelwärmetauscher zurückgegriffen wird.

2.2.2.2.3.6. Leittechnik
Alle verfahrenstechnischen Zustände der Anlage werden durch ein zentrales Leittechniksystem gesteuert, geregelt und überwacht. Durch dieses permanente Monitoring der relevanten Anlageneinstellungen können Optimierungsmaßnahmen erkannt sowie umgesetzt und die Anlage im Fehlerfall in einen kontrollierten sicheren Betriebszustand gefahren werden. In allen Geothermieanlagen kommt hierfür eine speicherprogrammierbare Steuerung (SPS) zum Einsatz, die sich in ihrer Ausführung an konventionellen Kraftwerken orientiert (vgl. GEC-CO 2019).
2.2.2.2.3.7. Elektrotechnik
Die Elektrotechnik basiert ebenso wie die Leittechnik auf aktuellen Anlagenstandards. Für die Einspeisung und den Verbrauch elektrischer Energie wird auf dem Kraftwerksgelände eine Mittel- und Niederspannungsstufe errichtet. In größeren Systemen (>1-2 MWel.) arbeitet der Generator des Stromaggregats je nach Leistung typischerweise mit 6,3, 10 oder 20 kV und die Förderpumpe mit 400V, 690V oder einer Mittelspannung von 2-10 kV. Sonstige Elektrotechnik wird typischerweise mit 400 V betrieben. Über einen Einspeisetransformator kann der erzeugte Strom in das öffentliche Netz eingespeist werden. Für den Eigenbedarf können zusätzliche Transformatoren erforderlich sein (vgl. ebd.).

2.2.2.2.3.8. Wärmeauskopplung bei Heizkraftwerken

I. Parallele Auskopplung des Thermalwassers zum Stromerzeugungsprozess
II. Auskopplung von Thermalwasser zwischen Vorwärmer und Verdampfer
III. Nutzen des Thermalwasserrücklaufs nach der Verstromung
IV. Nutzen der Wärme des Abdampfes bei Kalinaanlagen

2.2.2.3. Technische Lebensfähigkeit
2.2.3. Technische Herausforderungen und Lösungen

Nach dem obigen Überblick über den aktuellen Stand der Technik wird in diesem Kapitel nochmal ein besonderes Schlaglicht auf ausgewählte technische Herausforderungen bei tiefengeothermischer Stromerzeugung geworfen und aufgezeigt, welche Lösungen dafür entwickelt wurden bzw. (weiter-)entwickelt werden. Übergeordnete Herausforderungen sind das Sicherstellen der Integrität des geothermischen Systems, speziell des Thermalwassersystems, sowie die Tiefenbohrung an sich. Wie diesen grundlegenden Herausforderungen begegnet wird, ergibt sich aus den oben beschriebenen Ausführungen zum Stand der Technik

2.2.3.1. Exploration

2.2.3.2. Scaling und Korrosion

Scales, die während des Betriebs auftreten, haben neben wirtschaftlichen Aspekten wie einem höheren Verschleiß der Ausrüstung an der Oberfläche und im Untergrund auch weitere negative Nebenwirkungen. So kann sich Scaling je nach Ausmaß auch negativ auf die Umwelt sicherheit auswirken, da in den Ablagerungen häufig natürlich im Thermalwasser vorkommende radioaktive Stoffe (NORM, siehe 2.2.3.4.2) enthalten sein können. Kommt es im Zuge der Reinjektion infolge veränderter Temperatur- und Druckbedingungen zur Übersättigung und damit zur Fällung von Mineralphasen, kann die Nutzung der geothermischen Ressource sogar nachhaltig limitiert werden, indem Wegsamkeiten im Reservoir sich allmählich verschließen. Ist dies der Fall, wird von Reservoirscaling gesprochen, was bis zur Unwirtschaftlichkeit einzelner Projekte führen kann (vgl. www.geothermie.de; Degering et al. 2016).

2.2.3.3. Förderpumpen – kontinuierlicher Betrieb und Lebensdauer

2.2.3.4. Umweltschutz

2.2.3.4.1. Umgang mit NCG

Im Thermalwasser sind verschiedene nicht kondensierbare Gase (NCG) gelöst, typischerweise auch ein hoher Anteil an CO₂. Da in Deutschland als Niederenthalpiegebiet mit geschlossenen Thermalwasserkreisläufen gearbeitet wird, werden hier technologiebedingt keine Gase an die Atmosphäre abgegeben. Bei Prozessen mit Flash-Verdampfung, die vor allem in Regionen mit ausreichend hoher Thermalwassertemperatur zur Anwendung kommen, stellt der Umgang mit NCG jedoch eine technische Herausforderung dar. In den vergangenen Jahren hat sich eine Vielzahl an technologischen Ansätzen mit diesem Themengebiet befasst, so dass die Thematik technisch beherrschbar ist (vgl. Karabacak et al. 2017).
Umgang mit potenziellen NORM-Ablagerungen

Das große geothermische Energie-Potenzial resultiert neben Rest- und Akkretionswärme aus der Zeit der Erdentstehung zu einem Großteil aus dem Zerfall natürlicher radioaktiver Elemente (50-70%). Konkret sind folgende Zerfallsreihen zu nennen:

- Uran-238-Reihe (238U)
- Uran-235-Reihe (235U)
- Thorium-232-Reihe (232Th)
- 40K aus natürliche Isotopenzusammensetzung des Kaliums

Konkret sind die durch Tiefe Geothermie geförderten Fluide radiologisch gekennzeichnet durch die natürlichen Radionuklide Radium-226 (226Ra; T1/2 = 1600 Jahre, 238U-Zerfallsreihe), Radium-228 (228Ra T1/2 = 5,75 Jahre, 232Th-Zerfallsreihe), Radium-224 (224Ra; T1/2 = 3,7 Tage, Thorium-232-Zerfallsreihe), Blei-210 (T1/2 = 20,4 Jahre, 238U-Zerfallsreihe) und 40K (T1/2 = 1,3 Milliarden Jahre). Sie zeichnen mit einer Wärmeproduktionsrate von bis zu 6 Mikrowatt pro Kubikmeter (μW/m³) für rund zwei Drittel der natürlichen mittleren Wärmestromdichte von 70 Milliwatt pro Quadratmeter (mW/m²) verantwortlich. In welcher Konzentration die Radionuklide im Thermalwasser vorkommen, hängt von den geochemischen Randbedingungen des Nutzhorizontes ab. Hier sind deutliche regionale Unterschieden zwischen den verschiedenen Vorkommen zu beobachten. In der Empirie zeigt sich vor allem eine starke Korrelation zwischen Salinität (Salzgehalt) und Radionuklidkonzentration. So sind in der Bundesrepublik vor allem im Norddeutschen Becken sowie am Oberrheingraben erhöhte Konzentrationen festzustellen, während die Werte im Bayerischen Molassebecken signifikant niedriger liegen. Für die geothermische Praxis in Deutschland beziehen sich folgende Ausführungen also ausschließlich auf die zwei genannten geothermischen Regionen am ORG und im NDB (vgl. Degering et al. 2016).

nicht anzeigebedürftig. Eine Strahlenexposition durch eine geothermische Anlage für die Anwohner besteht nicht (vgl. ebd.).

2.2.3.5. Seismizität

Ausgehend von einem Basisgutachten, welches vor Beginn des Projekts zu erstellen ist, sieht die gutachterliche Begleitung eine kontinuierliche gutachterliche Neubewertung vor, bis seismische Ereignisse grundsätzlich auszuschließen sind. Folgende Themenfelder sollten in der Begutachtung betrachtet werden:

- Aufgabenstellung
- Geologische Situation (allg. Geologie, Hydrologie, Zielhorizonte, Struktur des Reservoirs)
- Erschließungskonzept
- Spannungsfeld
- Betriebliche Situation
- Geplante Bohrungen und Bohrpfade
- Natürliche Seismizität (in der Bezugsregion, im weiteren Umfeld, Hypozentren)
Induzierte Seismizität (bei benachbarten Projekten, mögliche Induktions-Mechanismen, Diskriminierung zwischen natürlicher und induzierter Seismizität, Erwartete Magnituden der induzierten Seismizität in Relation zur natürlichen Seismizität, Empirischer Zusammenhang zwischen Ereignisstärke und maximalen Schwinggeschwindigkeiten)

Mögliche Übertragung von Nachbarprojekten

Grundsätzliches zur Beurteilung von Schadenswirkungen (Empfehlungen für Monitoring und Messnetze, Immissionsmessnetz nach DIN 4150, Emissionsnetz nach GTV-Richtlinie 1101 oder nach Forschungskollegium Physik der Erde (FKPE))

Betrieb der Netze

Zusammenfassend lässt sich feststellen, dass durch das Konzept des kontrollierten Betriebs das Phänomen der induzierten Seismizität technisch kontrollierbar ist. Dies zeigt auch ein Blick in die
empirischen Daten, die für Deutschland keine bedenklichen geothermisch induzierten Ereignisse ausweisen.

2.2.4. Entwicklungstendenzen

Wie bereits eingangs erwähnt, befindet sich die petrothermale Geothermie in Deutschland noch weitestgehend im Entwicklungsstadium. Lediglich fünf tiefe Erdwärmesonden zur Wärmeproduktion
sind hier bereits in Betrieb. Allerdings ist im Oberrheingraben auf französischer Seite in Soultz-Sous-forêts seit mehreren Jahren ein von der Europäischen Union, Deutschland, Frankreich (und anfangs auch Großbritannien) gefördertes petrothermales Forschungsprojekt erfolgreich abgeschlossen und wird seitdem wirtschaftlich genutzt.

3. Marktentwicklung

Dieses Kapitel befasst sich mit der aktuellen Marktentwicklung. Dabei wird sowohl die spezifische deutsche als auch die internationale Situation betrachtet.

3.1. Deutschland

Für den deutschen Geothermiemarkt werden nicht nur der derzeitige Ausbau sowie die generelle Marktreife in den Blick genommen, sondern auch verschiedene Studien diskutiert, die das Potenzial der Tiefen Geothermie in der Energieversorgung der Bundesrepublik erörtern. Ein Abgleich zwischen Potenzial und tatsächlichem Ausbau zeigt deutliche Ausbaumöglichkeiten auf.

3.1.1. Realisierter Ausbau

Tabelle 2: Tiefe Geothermie-Kraftwerke in Deutschland, Stand 2022 (vgl. www.geothermie.de).

<table>
<thead>
<tr>
<th>Projekt</th>
<th>Region</th>
<th>Leistung elektrisch</th>
<th>Leistung thermisch</th>
<th>Maximale Temperatur</th>
<th>Teufe</th>
<th>Inbetriebnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruchsal</td>
<td>ORG</td>
<td>0,5 MW</td>
<td>-</td>
<td>131 °C</td>
<td>2.450m</td>
<td>2009</td>
</tr>
<tr>
<td>Insheim</td>
<td>ORG</td>
<td>4,8 MW</td>
<td>k.A.</td>
<td>165 °C</td>
<td>3.600m</td>
<td>2012</td>
</tr>
<tr>
<td>Landau</td>
<td>ORG</td>
<td>1,8 MW</td>
<td>5 MW</td>
<td>159 °C</td>
<td>3.291m</td>
<td>2014</td>
</tr>
<tr>
<td>Grünwald</td>
<td>Bay. Mol.</td>
<td>4,3 MW</td>
<td>40 MW</td>
<td>135 °C</td>
<td>3.755m</td>
<td>2011/2014</td>
</tr>
<tr>
<td>Taufkirchen**</td>
<td>Bay. Mol.</td>
<td>4,3 MW</td>
<td>40 MW</td>
<td>136 °C</td>
<td>3.696m</td>
<td>2014</td>
</tr>
<tr>
<td>Sauerlach</td>
<td>Bay. Mol.</td>
<td>5 MW</td>
<td>4 MW</td>
<td>141 °C</td>
<td>4.480m</td>
<td>2014</td>
</tr>
<tr>
<td>Dürrnhaar</td>
<td>Bay. Mol.</td>
<td>5,5 MW</td>
<td>-</td>
<td>141 °C</td>
<td>3.241m</td>
<td>2013</td>
</tr>
<tr>
<td>Kirchstockach</td>
<td>Bay. Mol.</td>
<td>5,5 MW</td>
<td>-</td>
<td>141 °C</td>
<td>3.649m</td>
<td>2013/2021</td>
</tr>
<tr>
<td>Kirchweidach*</td>
<td>Bay. Mol.</td>
<td>0,68 MW</td>
<td>30,6 MW</td>
<td>127 °C</td>
<td>3.500m</td>
<td>2013</td>
</tr>
</tbody>
</table>
3.1.2. Potenziale Tiefer Geothermie

3.1.2.1. Der Potenzialbegriff

Prinzipiell kann der Potenzialbegriff differenziert werden in die Kategorien theoretisches Potenzial, technisches Potenzial und wirtschaftliches Potenzial. Während die einzelnen Studien für die genaue Berechnung der jeweiligen Potenziale von teils unterschiedlichen Grundannahmen ausgehen, sollen die drei Begriffe im Folgenden unter rein definitorischen Gesichtspunkten erläutert und Zusammenhänge aufgezeigt werden.

Als technisches Potenzial wird der Anteil am theoretischen Potenzial definiert, der mit dem derzeitigen Stand der Technik erschließbar ist bzw. nutzbar gemacht werden kann. Geht es nur um die Erschließbarkeit kann auch vom technischen Potenzial der Wärmemenge gesprochen werden. Daran anschließend wird derjenige Anteil, der tatsächlich nutzbar gemacht werden kann, also die aus der Wärmemenge erziehbare Strommenge als technisches Potenzial der Stromerzeugung genannt. Das Verhältnis aus technischem Potenzial der Wärmemenge und technischem Potenzial der Stromerzeugung korreliert mit dem Wirkungsgrad der Stromerzeugung, welcher durch verschiedene

3.1.2.2. TAB-Studie

Für die hydrothermale Geothermie weist die Studie ein technisches Gesamtpotenzial von 9,4 EJ (300 GWa) aus, wobei bei einer Kraft-Wärme-Kopplung zusätzliche 25 EJ (790 GWa) beziehungsweise in Verbindung mit Wärmepumpen sogar 50 EJ (1600 GWa) technisches Wärmepotenzial hinzukommen.

Tabelle 3: Technisches Potenzial der hydrothermalen Geothermie in Deutschland nach TAB (vgl. Paschen et al. 2003).

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Elektrische Energie</th>
<th>Zusätzliche Wärme</th>
<th>Zusätzliche Wärme mit Wärmepumpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norddeutsches Becken</td>
<td>6,8 EJ</td>
<td>18 EJ</td>
<td>36 EJ</td>
</tr>
<tr>
<td>Oberrheingraben Buntsandstein</td>
<td>1,8 EJ</td>
<td>4,4 EJ</td>
<td>8,7 EJ</td>
</tr>
<tr>
<td>Oberrheingraben Muscheltalk</td>
<td>0,24 EJ</td>
<td>0,62 EJ</td>
<td>1,2 EJ</td>
</tr>
<tr>
<td>Bayerisches Molassebecken</td>
<td>0,6 EJ</td>
<td>2,5 EJ</td>
<td>5,1 EJ</td>
</tr>
<tr>
<td>Deutschland gesamt ca.</td>
<td>9,4 EJ (300 GWa)</td>
<td>25 EJ (790 GWa)</td>
<td>50 (1.600 GWa)</td>
</tr>
</tbody>
</table>
Demgegenüber steht das weitaus größere Potenzial der petrothermalen Geothermie. Hier gibt die Studie ein technisches Potenzial von 1.100 EJ (35.000 GWa) zur Stromproduktion an, welches bei gekoppelter Wärmeproduktion um weitere 1.600 EJ (51.000 GWa) bzw. in Verbindung mit Wärmepumpen 2.800 EJ (89.000 GWa) an technischem Wärmepotenzial ergänzt wird.

Tabelle 4: Technisches Potenzial der petrothermalen Geothermie in Deutschland nach TAB (vgl. ebd.).

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Elektrische Energie</th>
<th>Zusätzliche Wärme</th>
<th>Zusätzliche Wärme mit Wärmepumpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norddeutsches Becken</td>
<td>66 EJ</td>
<td>100 EJ</td>
<td>190 EJ</td>
</tr>
<tr>
<td>Oberrheingraben</td>
<td>62 EJ</td>
<td>76 EJ</td>
<td>140 EJ</td>
</tr>
<tr>
<td>Mittel-, süddeutsches Kristallengebiet</td>
<td>940 EJ</td>
<td>1.400 EJ</td>
<td>2.500 EJ</td>
</tr>
<tr>
<td>Gesamt (ca.)</td>
<td>1.100 EJ (35.000 GWa)</td>
<td>1.600 EJ (51.000 GWa)</td>
<td>2.800 EJ (89.000 GWa)</td>
</tr>
</tbody>
</table>

Alle einzelnen Bausteine zusammengenommen schätzt die TAB-Studie für Deutschland ein technisches Gesamtpotenzial von 1.200 EJ (300.000 TWh) rein zur Stromerzeugung. Dabei entfallen 95 % auf petrothermale Geothermie, 4 % auf die geothermische Nutzung der Störungszenoren und 1 % auf hydrothermale Geothermie. Bei einer Kraft-Wärme-Kopplung wäre das zusätzliche thermische Potenzial sogar eineinhalf- bzw. in Kombination mit dem Einsatz von Wärmepumpen zweieinhalbfach so groß wie das zur Stromerzeugung. Um eine nachhaltige Nutzung des technischen Potenzials zur geothermischen Stromerzeugung zu gewährleisten, setzt die Studie einen Nutzungszeitraum von 1.000 Jahren an. Daraus ergibt sich ein regeneratives technisches Angebotspotenzial von rund 300TWh/a zur geothermischen Stromerzeugung (vgl. ebd.).
3.1.2.3. GAB-Studie

3.1.2.3.1. Originalversion 2017

<table>
<thead>
<tr>
<th>Temperatur Klassen</th>
<th>Bay. Molasse</th>
<th>NDB</th>
<th>ORG</th>
<th>Störungszonen</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 – 130 °C</td>
<td>70.358 TWh\textsubscript{th}</td>
<td>25.556 TWh\textsubscript{th}</td>
<td>7.825 TWh\textsubscript{th}</td>
<td>555.556 TWh\textsubscript{th}</td>
<td>658.997 TWh\textsubscript{th}</td>
</tr>
<tr>
<td>130 – 160 °C</td>
<td>47.762 TWh\textsubscript{th}</td>
<td>65.556 TWh\textsubscript{th}</td>
<td>13.250 TWh\textsubscript{th}</td>
<td>722.222 TWh\textsubscript{th}</td>
<td>848.790 TWh\textsubscript{th}</td>
</tr>
<tr>
<td>160 – 190 °C</td>
<td>-</td>
<td>4.722 TWh\textsubscript{th}</td>
<td>6.722 TWh\textsubscript{th}</td>
<td>861.111 TWh\textsubscript{th}</td>
<td>872.556 TWh\textsubscript{th}</td>
</tr>
</tbody>
</table>

Um das technische Potenzial aus dem theoretischen Potenzial abzuleiten, arbeitet die Studie analog zum TAB (2003) mit einem Gewinnungsfaktor R als Verhältnis zwischen gewinnbarer Wärmemenge und gesamtem Wärmeeinhalt. Aus dem so ermittelten technischen Potenzial der Wärmemenge ergibt sich ein technisches Potenzial der Stromerzeugung aus hydrothermaler Geothermie von 11.547 TWh\textsubscript{el}. Hinzu kommen bei kombinierter Strom- und Wärmeproduktion 57.735 TWh\textsubscript{th} an Wärmepotenzial.

Um eine nachhaltige Nutzung unter Berücksichtigung der Regenerationszeiträume hydrothermaler Lagerstätten zu ermöglichen, setzt die Studie ebenfalls einen Nutzungszeitraum von 1000 Jahren an. In diesem Zeitraum regeneriert sich die Lagerstätte auf bis zu 92 % der ursprünglichen Ausgangstemperatur. Es ergibt sich demnach eine Abkühlung von 8 % pro Lagerstätte in diesem Zeitraum, die allerdings aufgrund der langen Nutzung (1000 Jahre) vernachlässigt werden kann und demnach vereinfacht von einer regenerativen Energiequelle auszugehen ist. Für das wirtschaftliche Potenzial von 8.696 TWhel ergibt sich ein wirtschaftliches nachhaltiges Potenzial von 8,7 TWhel/a (vgl. ebd.).

Vom wirtschaftlichen Potenzial ausgehend, entwirft die Studie auch ein Ausbauszenario zur tatsächlichen Nutzung. So ist zur Nutzung des wirtschaftlichen Potenzials unter der Annahme von 7.474 h/a Volllaststunden eine Nettoleistung von 1.164 MW nötig. Unter Berücksichtigung eines durchschnittlichen Eigenbedarfsanteils von 35 % resultiert eine benötigte installierte Brutto-Leistung von 1.790 MW, was 437 Anlagen mit einer durchschnittlichen Leistung von 4,1 MW entspricht (vgl. ebd.).
3.1.2.3.2. Review-Version 2020

In diesem Punkt sollen kurz die in Folge eines Reviews veröffentlichten Anpassungen zu den oben ausgeführten Ergebnissen aus dem Jahr 2017 zusammengefasst werden. Insgesamt sind bezüglich der Stromproduktion nur leichte Korrekturen in den zentralen Aussagen bezüglich technischen und wirtschaftlichen Potenzials festzustellen, während es bei den Potenzialen zur Wärmeproduktion über Kraft-Wärme-Kopplung größere Anpassungen nach unten gibt. So wird das technische Potenzial in der Neufassung mit 12.201 TWh$_{el}$ zur Stromproduktion sowie ergänzenden 16.715 TWh$_{th}$ durch eine zusätzliche Wärmeproduktion angegeben. Das wirtschaftliche Potenzial beträgt unter den gleichen Förderbedingungen im EEG unter Berücksichtigung der Börsenstrompreisprognose 9.133 TWh$_{el}$ zur Stromproduktion plus 12.512 TWh$_{th}$ zur Wärmeproduktion. Dies entspricht 75 % des technischen Potenzials. Unter den oben beschriebenen Überlegungen zur Nachhaltigkeit und Regeneration der Lagerstätten liegt der Wert des jährlich wirtschaftlich nutzbaren Potenzials entsprechend bei 9,1 TWh$_{el}$/a bzw. 12,5TWh$_{th}$/a. Unter gleichbleibenden Annahmen zu den Vollaststunden ergibt sich eine erreichbare Netto-Leistung von 1.221 MW$_{el}$ bzw. unter Berücksichtigung des Eigenbedarfs eine installierte Brutto-Leistung von 1.878 MW$_{el}$. Dies entspräche 458 Anlagen mit einer durchschnittlichen Leistung von 4,1 MW.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technisches Potenzial zur Stromerzeugung</td>
<td>11.547 TWh$_{el}$</td>
</tr>
<tr>
<td>Technisches Potenzial zur Wärmeproduktion (KWK)</td>
<td>57.735 TWh$_{el}$</td>
</tr>
<tr>
<td>Wirtschaftliches Potenzial zur Stromerzeugung</td>
<td>8.698 TWh$_{el}$</td>
</tr>
<tr>
<td>Wirtschaftliches Potenzial zur Wärmeproduktion (KWK)</td>
<td>43.480 TWh$_{th}$</td>
</tr>
<tr>
<td>Nachhaltiges wirtschaftliches Potenzial zu Stromerzeugung</td>
<td>8,7 TWhel/a</td>
</tr>
<tr>
<td>Nachhaltiges wirtschaftliches Potenzial zur Wärmeproduktion (KWK)</td>
<td>42,5 TWhel/a</td>
</tr>
<tr>
<td>installierte Bruttoeleistung elektrisch auf Basis des wirtschaftlichen Potenzials</td>
<td>1.790 MW</td>
</tr>
</tbody>
</table>
3.1.2.4. Geothermie-Potenziale im Kontext des deutschen Brutto-Stromverbrauchs

In diesem Kapitel sollen nun die dargelegten Potenziale geothermischer Stromerzeugung in Deutschland in den Kontext des Brutto-Stromverbrauchs gestellt und somit das relative Potenzial zur deutschen Versorgung aufgezeigt werden. Aufgrund der Aktualität und dementsprechend höheren Belastbarkeit wird im Bereich der hydrothermalen Geothermie hierfür auf die Ergebnisse der Review-Version der GAB-Studie zurückgegriffen. Auch kann hier bereits mit den wirtschaftlichen Potenzialen gearbeitet werden, welche in der TAB-Studie noch nicht erfasst wurden. Aufgrund mangelnder aktueller Daten im Bereich der petrothermalen Geothermie, sowie einer fehlenden Berechnung des wirtschaftlichen Potenzials wird hier auf die TAB-Studie zurückgegriffen. Mit Blick auf den bisherigen realisierten Ausbau (Kapitel 3.1.1) sowie den Stand der Technik (Kapitel 2.2.2) lässt sich ohnehin feststellen, dass hydrothermale Lagerstätten zuerst erschlossen werden, und die Potenziale der petrothermalen Geothermie dementsprechend als Ausblick auf eine längerfristige Entwicklung gesehen werden können.

Deutlich größer ist das Potenzial der petrothermalen Energie. Zum Rekurs: hier weist die TAB-Studie ein technisches Potenzial von 1.100 EJ zur Stromproduktion aus, was 305.555 TWh entspricht und ein jährliches regeneratives technisches Potenzial von rund 306 TWh/a ergibt. Dies entspräche einem Anteil von 51,6 % am gesamten deutschen Bruttostromverbrauch. Für die zusätzliche Wärmbereitstellung ohne Wärmepumpe ergäbe sich ein Potenzial zur Deckung von rund 54 % des deutschen Wärmebedarfs für Raumwärme und Warmwasser (2017). Für die Störungszonen ergibt sich nach TAB-Studie analog zur petrothermalen Geothermie ein möglicher Anteil von 2,21 % am deutschen Bruttostromverbrauch sowie ein Anteil von 2,18 % am deutschen Wärmebedarf für Raumwärme und Warmwasser (2017). Mit Wärmepumpeneinsatz steigern die Werte bezüglich des Wärmebedarfs sogar auf rund 94 % (petrothermale Geothermie) bzw. rund 4 % (Störungszonen).

Da es sich sowohl bei den Zahlen zu petrothermaler Geothermie als auch zu den Störungszonen lediglich um technische Potenziale handelt, besitzen diese nur eine geringe Aussagekraft, über das tatsächliche Potenzial. Dennoch zeigen sie auf, dass das Potenzial der Geothermie zur Deckung des deutschen Energiebedarfs langfristig durchaus in bedeutend höheren Größenordnungen liegt, als es der jetzige Ausbau oder die hydrothermalen Potenziale vermuten lassen. Die wiederum basieren auf...
konservativen Annahmen innerhalb der GAB-Studie und gelten dadurch zum derzeitigen Kenntnisstand als wirtschaftlich realistischerweise erreichbar, auch wenn einer derartigen Potenzialanalyse per definitionem einige Unsicherheiten zu Grunde liegen.

3.1.2.5. **Ist-Kann-Vergleich**

3.1.2.6. **Exkurs: Potenziale und Methoden der Integration Tiefer Geothermie in die Wärmeversorgung**

Im Auftrag des Umweltbundesamtes schätzten Sandrock et al. 2020 die Potenziale tiefengeothermischer Wärmeproduktion ab und zeigten damit ihre Rolle in einer zu vollziehenden Wärmewende auf. Dabei arbeiteten die Autoren auf Ebene des technischen Potenzialbegriffs. Neben dem technischen Angebotspotenzial wird auch das technische Bereitstellungspotenzials

Dadurch ergeben sich vier Szenarien (vgl. Sandrock et al. 2020):

- **A1**: Ausschlussfläche: 12-13 %, Injektionstemperatur: 65 °C
- **A2**: Ausschlussfläche: 12-13 %, Injektionstemperatur: 35 °C
- **B1**: Ausschlussfläche: 39-44 %, Injektionstemperatur: 65 °C
- **B2**: Ausschlussfläche: 39-44 %, Injektionstemperatur: 35 °C
erweiterte Rhein-Ruhr-Region schätzt die Roadmap sogar Potenziale von 120 bis 150 TWh/a als realistisch ein. Die Roadmap formuliert demnach einen Korridor zwischen insgesamt 220 TWh/a und 430 TWh/a, wobei das technische Gesamtpotenzial aus hydrothermaler Geothermie unter konservativen Annahmen letztlich mit 300 TWh/a angegeben wird (vgl. Bracke & Huenges 2022).

Tabelle 8: Technische Angebotspotenzial für eine Wärmebereitstellung aus hydrothermalen Systemen (vgl. Sandrock et al. 2020)

<table>
<thead>
<tr>
<th></th>
<th>Szenario A</th>
<th>Szenario B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>GW</td>
<td>TWh/a</td>
</tr>
<tr>
<td>Bay. Molasse</td>
<td>18</td>
<td>44</td>
</tr>
<tr>
<td>ORG</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>NDB</td>
<td>32</td>
<td>79</td>
</tr>
<tr>
<td>Gesamt</td>
<td>55</td>
<td>138</td>
</tr>
</tbody>
</table>

Die Studie kommt auf folgende Werte (Tabelle 9).

Tabelle 9: Technisches Bereitstellungspotenzial für eine Wärmeversorgung aus hydrothermalen Systemen (vgl. ebd.).

<table>
<thead>
<tr>
<th>Szenario</th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay. Molasse</td>
<td>11</td>
<td>28</td>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>ORG</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>NDB</td>
<td>7</td>
<td>18</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>Gesamt</td>
<td>23</td>
<td>58</td>
<td>47</td>
<td>118</td>
</tr>
</tbody>
</table>

Tabelle 10: Technisches Angebotspotenzial für eine Wärmebereitstellung aus petrothermalen Systemen (vgl. ebd.).

<table>
<thead>
<tr>
<th>Szenario</th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>petrothermal</td>
<td>129</td>
<td>322</td>
<td>191</td>
<td>478</td>
</tr>
<tr>
<td>petrothermal – hydrothermal</td>
<td>71</td>
<td>178</td>
<td>111</td>
<td>277</td>
</tr>
</tbody>
</table>

Tabelle 11: Technisches Bereitstellungspotenzial für eine Wärmeversorgung aus petrothermalen Systemen (vgl. ebd.).

<table>
<thead>
<tr>
<th>Szenario</th>
<th>Szenario B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>petrothermal</td>
<td>GW</td>
</tr>
<tr>
<td>petrothermal-hydrothermal</td>
<td>GW</td>
</tr>
</tbody>
</table>

Auch Kock und Kaltschmitt 2012 beschäftigen sich in einem Beitrag für die Zeitschrift für Energiewirtschaft mit den Potenzialen bezüglich der tiefengeothermischen Wärmebereitstellung. Sie kommen bei der Identifikation und Quantifizierung geothermisch erschließbarer Niedertemperaturwärmesenken in Deutschland zu folgenden Ergebnissen als Zusammenfassung der Bedarfe für Raumwärme und Warmwasser, Gewerbe, Handel, Dienstleistungen sowie Industrie ermittelt:

Tabelle 12: Technische Abnahmepotenzial (vgl. Kock & Kaltschmitt 2012).

<table>
<thead>
<tr>
<th>Technische Potenziale in Gemeinden größer als 20.000 Einwohner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norddeutsches Becken</td>
</tr>
<tr>
<td>Bayerisches Molassebecken</td>
</tr>
<tr>
<td>Oberrheingraben</td>
</tr>
</tbody>
</table>

Tabelle 13: Technische Bereitstellungspotenziale (vgl. ebd.).

<table>
<thead>
<tr>
<th>Geothermisch erschließbarer Anteil am technischen Potenzial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norddeutsches Becken</td>
</tr>
<tr>
<td>Bayerisches Molassebecken</td>
</tr>
<tr>
<td>Oberrheingraben</td>
</tr>
</tbody>
</table>

Je nach Gebiet sind rund 10 bis 14 % der oben genannten Potenziale bereits durch Nah- und Fernwärmesysteme angeschlossen, typischerweise auf Basis von Kraft-Wärme-Kopplung.

3.1.3. Marktreife für Deutschland

Eine wichtige Fragestellung bei der Entwicklung der Tiefen Geothermie in den letzten Jahren und der Bewertung des weiteren Ausbaus, ist die Betrachtung der Marktreife. Diese wird im Folgenden mit Hilfe des Commercial Readiness Index (CRI) untersucht.

Der Zusammenhang zwischen TRL und CRI ist in der folgenden Abbildung dargestellt.

Abbildung 7: Zusammenhang zwischen Technology Readiness Levels (TRL) und Commercial Readiness Index (CRI); Quelle: Australian Renewable Energy Agency 2014.

Mit Hilfe des TRL wird das Niveau des technischen Fortschritts in der F&E-Phase einer Technologie beschrieben, bis hinein in die Testphase als sogenannte Demonstrationsanlagen. Der CRI hingegen betrachtet Technologien auch noch zusätzlich in der dritten Phase der Anwendung in kommerziellen Anlagen (vgl. ebd.).

Für den deutschen Markt wurde eine Untersuchung zum CRI durchgeführt. Hierzu wurden acht Indikatoren im Einzelnen untersucht und darauf aufbauend in verschiedene Statuslevel kategorisiert. Für das Gesamtergebnis wurden alle Indikatoren gleich gewichtet und die Ergebnisse sind in Abbildung 8 exemplarisch dargestellt. Es sei jedoch angemerkt, dass die Bewertung der Statuslevel und Indikatoren regional unterschiedlich ist.
3.1.3.1. Statuslevel im CRI
Bei dem Statuslevel handelt es sich um eine zusammenfassende Gesamtbewertung des Marktes, die mit den Werten 1 – 6 angegeben werden. Es gibt sechs Statuslevel, die im Folgenden näher beschrieben werden.

3.1.3.1.1. Hypothetical commercial proposition

Bei der Anwendung dieses Statuslevels auf die hydrothermale Geothermie bedeutet dies, dass die Vermutung, Geothermie in einer bestimmten Region nutzen zu können, auf theoretischen Daten beruht, ohne dass das Vorkommen eines Reservoirs durch z. B. Probebohrungen, nachgewiesen wurde.

3.1.3.1.2. Commercial trial
Ein kleines, erstes Projekt seiner Art, welches durch Eigenkapital und staatliche Projektunterstützung finanziert wird. Es stützt sich dabei auf Daten, die der Öffentlichkeit i. d. R. nicht zur Verfügung stehen (vgl. ebd.).

In der hydrothermalen Geothermie bedeutet dies, dass Pilotprojekte in kleinem Maßstab getestet werden. Dies führt dazu, dass auf dieser Grundlage kommerzielle Geothermieprojekte geplant und entwickelt werden können.

3.1.3.1.3. Commercial scale up
Der kommerzielle Ausbau wird durch politische Beförwortung und Fremdfinanzierung vorangetrieben. Die verschiedenen Marktteilnehmer, wie Technologieanbieter, tragen dazu bei. Es existieren öffentlich zugängliche Daten, die das Interesse des Finanz- und Regulierungssektors wecken (vgl. ebd.).

In der hydrothermalen Geothermie bedeutet dies, dass öffentliche Daten neue Interessensgruppen generieren und dass Förderprogramme wie Darlehen und Zuschüsse die Einbindung von privaten Unternehmen ermöglichen.

3.1.3.1.4. Multiple commercial applications
Es kommt zu mehreren kommerziellen Anwendungen auf regionaler Ebene, die jedoch noch staatlich finanziell subventioniert werden. Technische und wirtschaftlich belastbare Daten sind frei verfügbar und fördern das Interesse der Industrie. Regulatorische Herausforderungen werden von den Ämtern angegangen (vgl. ebd.).

Bei der Anwendung dieses Statuslevels auf die hydrothermale Geothermie bedeutet dies, dass geologische und betriebliche Daten von bestehenden Projekten die technische und wirtschaftliche Machbarkeit untermauern. Es gilt, die Herausforderungen in behördlichen Genehmigungsprozessen zu reduzieren und Prozesse zu standardisieren. Trotz des zunehmenden Interesses des privaten Sektors wird weiterhin öffentliche Unterstützung benötigt.
3.1.3.1.5. Market competition driving widespread deployment
Es bestehen langfristige, politische Regelungen, die den Wettbewerb auf dem Markt fördern. Es besteht Wettbewerb in allen Bereichen der Wertschöpfungskette (vgl. ebd.).

In der hydrothermalen Geothermie bedeutet dies, dass das regulatorische Umfeld vollständig vereinheitlicht wurde. Zudem gibt es wettbewerbsfähige Produkt- und Dienstleistungsanbieter in allen Marktsegmenten.

3.1.3.1.6. „Bankable” grade asset class

In der hydrothermalen Geothermie bedeutet dies, dass keine Subventionen des öffentlichen Sektors mehr notwendig sind, um die Entwicklung des Geothermiemarktes voranzutreiben.

3.1.3.2. Indikatoren im CRI
Im CRI spiegeln die Indikatoren den Kommerzialisierungsprozess einer erneuerbaren Energie, hier der hydrothermalen Tiefen Geothermie in Deutschland zur Stromerzeugung, wider. Es gibt acht Indikatoren. Diese werden im Folgenden näher beschrieben sowie anhand der Statuslevel für die Geothermie bewertet.

3.1.3.2.1. Regulatory Environment

3.1.3.2.2. Stakeholder Acceptance
bei Stakeholdern treffen, da sich Stadt- oder Gemeinderat und die Bevölkerung bereits in der Planungsphase intensiver mit dem Thema beschäftigt haben und die regionale Wertschöpfung mehr in den Fokus gerückt werden kann.

3.1.3.2.3. Technical Performance

3.1.3.2.4. Financial Proposition – Costs
Auch in Bezug auf eine frühzeitige genaue Ermittlung der Projektkosten sind die Bohrkosten als wohl wichtigster Posten zu nennen. Aufgrund vielfältiger Gründe gestaltet sich die frühzeitige Kostenkalkulation schwierig. Hauptverantwortlich hierfür sind die unzureichende Datenlage und die daraus resultierende geringe Kenntnislage über die geologischen und hydrogeologischen Untergrundbedingungen. Vor allem bei sogenannten 'Wild-Card'-Projekten, wo noch keine oder zu wenige Projekte in unmittelbarer Nähe durchgeführt worden sind, fällt das Problem verstärkt ins Gewicht. Im Großraum München, wo bereits eine Mehrzahl an Projekten zur Wärmegewinnung realisiert wurde, sind bereits Kostensenkungseffekte deutlich zu erkennen. Dies zeigt eine positive Entwicklung. Neben den Bohrkosten wirken sich auch die erheblichen Schwankungen auf dem kleinen Beschaffungsmarkt für die erforderlichen Leistungen zur Durchführung einer Bohrung aus.

3.1.3.2.5. Financial Proposition – Revenue

3.1.3.2.6. Industry Supply Chain and Skills
Dass die Situation der Beschaffungsmärkte für die Geothermie in Deutschland noch defizitär ist, wurde bereits in den vorangegangenen Punkten dargelegt und entsprechend berücksichtigt. Für viele Teilbereiche ist der Beschaffungsmarkt sehr klein und es werden nur projektspezifische, individuelle Lösungen angeboten. Auch wird nur von wenigen Anbietern eine Produktentwicklung für die spezifischen Anforderungen Tiefer Geothermie betrieben, oft ist es pro Segment nur ein Akteur. Zwar sind erste Bemühungen für eine größere Standardisierung und Normung für spezielle Produkte für Tiefe Geothermie zu erkennen. Die Entwicklung steht allerdings noch am Anfang, so dass es typischerweise noch keine erkennbaren Markteffekte gibt. Vor allem internationale Lieferketten von Rohmaterialien wie z. B. Stahl sind außerdem abhängig von politischen Umständen, so dass die Situation in diesem Bereich je nach Lage ändern kann.

3.1.3.2.7. Market Opportunities
Insgesamt ist die weitere Marktentwicklung von vielen Faktoren abhängig und für Marktteilnehmer nur schwer abzuschätzen, wodurch auch der Eintritt neuer Marktteilnehmer sowie die Produktentwicklung gehemmt werden. Durch die kleinen Beschaffungsmärkte ist die Gewährleistung einer hohen Kostensicherheit schwierig, da bislang keine signifikanten Kostensenkungseffekte erzielt werden konnten.

3.1.3.2.8. Company Maturity
Größere Firmen wie beispielsweise Energieversorger sind bislang nur vereinzelt in den Markt der Tiefen Geothermie eingetreten, so dass Projektierer typischerweise ein oder zwei Projekte ausführen und sich auf Grund fehlender Expansionspläne der im Markt vertretenen Player danach auf den Betrieb der abgeschlossenen Projekte beschränken. Eine hinreichende Entwicklung zur kontinuierlichen Durchführung von Projekten basierend auf Firmenwissen und unabhängig individueller Managementleistung Einzelner ist nicht gegeben. Kleine, spezialisierte Firmen v. a. im Dienstleistungssegment hingegen existieren bereits am Markt und haben sich etabliert. Durch die Bündelung von Wissen und Erfahrung in diesen Dritt-Unternehmen treten (wenn auch geringe) erste Kostensenkungseffekte auf. Mit signifikanten Kostensenkungseffekten ist allerdings erst ab CRI 4 und dann verstärkend bis CRI 6 zu rechnen, wie aus der Definition des Indikators 'Market Opportunities' hervorgeht. Die Stufen 4-6 sind für die Tiefe Geothermie in Deutschland noch nicht erreicht.

Die petrothermale Geothermie in Deutschland kann im CRI noch nicht bewertet werden, da diese noch im Bereich unterhalb TRL 8 liegt.

Die CRI-Analyse macht deutlich: Um den Ausbau der Tiefen Geothermie voranzutreiben, ist eine weitere Verbesserung der Marktreife der Technologie notwendig. Hierfür sind neben dem EEG noch weitere Maßnahmen erforderlich. Als eine der vordringlichsten Maßnahmen, neben der langfristigen Stabilisierung der EEG-Vergütungsgrundlage, ausgelegt auf die entsprechend lange Projektentwicklungsdauer, ist die Verbesserung der Situation auf dem Versicherungsmarkt, auf diesen wird im folgenden Kapitel näher eingegangen.
Wie aus den Betrachtungen hervorgeht, wird die Marktreife der Tiefen Geothermie in Deutschland vor allem von Unsicherheiten und Risiken beeinträchtigt, wodurch die weitere kommerzielle Entwicklung gehemmt wird. Ein probates Mittel ist es, hier ausreichende Systeme zur Verfügung zu stellen, um die Risiken für die Projekte bzw. Investoren zu mindern.

3.1.3.3. Versicherungsmarkt

Für Entwickler von kombinierten Strom- und Wärmeprojekten oder reinen Stromprojekten steht nur der privatwirtschaftliche Versicherungsmarkt zur Verfügung. In der Vergangenheit wurden mehrere Versicherungsprodukte rund um das Thema Tiefbohrungen angeboten. Im Schwerpunkt waren dies:

a) Die Fündigkeitsrisikoversicherung bei den Kriterien für die Fündigkeits einer Bohrung versichert werden. Die maßgeblichen Parameter sind hierbei:
 • die Fließrate des Thermalwassers bei einer definierten Absenkung des dynamischen Wasserspiegels, vgl. Abbildung 2: Schema Förderpumpe.
 • die Temperatur des Thermalwassers
 • das Produkt aus beiden Werten ergibt die thermische Kapazität der Bohrung.

Wird eine vorher definierte Kombination der Parameter unterschritten, so wird das Projekt als nichtfündig eingestuft und die Versicherung erbringt die vereinbarte Leistung. Für Projekte zur Stromgewinnung ist die Temperatur von besonderer Bedeutung, da diese den ORC-Prozess definiert und damit auch den Wirkungsgrad.

b) Die Bohrrisiko-Versicherung stellt eine verschuldensunabhängige AllRisk Versicherung nach einem Sachschaden an der erstellten Bohrleistung dar. Die Voraussetzung ist somit die Erstellung der Bohrung und hat keine Bedeutung für die Fündigkeit.

68
c) Die Lost-In-Hole-Versicherung sichert nur Schäden ab, die durch den Verlust von Gerätschaften beim Bohren entsteht.

Abbildung 9: Evaluierung der Versicherungssituation in Deutschland (Quelle: GEORISK).

3.1.3.4. Markt für Förderpumpen

Auf die detaillierte Situation im Bereich der Förderpumpen wurde bereits im Kapitel 2.2.2.2 eingegangen. Die Marktmechanismen haben hier noch nicht zu einer befriedigenden Marktentwicklung geführt. Dies stellt ein deutliches Hindernis für die Entwicklung dar.

3.2. International

3.2.1. Weltweit

<table>
<thead>
<tr>
<th>Führende Länder</th>
<th>Stromproduktion 2015-2020</th>
<th>Installierte Leistung 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>18,366 TWh/a</td>
<td>3.700 MWe</td>
</tr>
<tr>
<td>Indonesien</td>
<td>15,315 TWh/a</td>
<td>2.289 MWe</td>
</tr>
<tr>
<td>Kenia</td>
<td>9,930 TWh/a</td>
<td>1.193 MWe</td>
</tr>
<tr>
<td>Philippinen</td>
<td>9,893 TWh/a</td>
<td>1.918 MWe</td>
</tr>
<tr>
<td>Türkei</td>
<td>8,168 TWh/a</td>
<td>1.549 MWe</td>
</tr>
<tr>
<td>Neuseeland</td>
<td>7,728 TWh/a</td>
<td>1.064 MWe</td>
</tr>
<tr>
<td>Italien</td>
<td>6,100 TWh/a</td>
<td>916 MWe</td>
</tr>
<tr>
<td>Island</td>
<td>6,010 TWh/a</td>
<td>755 MWe</td>
</tr>
<tr>
<td>Mexiko</td>
<td>5,375 TWh/a</td>
<td>1.105 MWe</td>
</tr>
<tr>
<td>Japan</td>
<td>2,409 TWh/a</td>
<td>550 MWe</td>
</tr>
</tbody>
</table>

Obwohl die Zahl der Länder, die geothermische Energie zur Stromerzeugung nutzen, im Vergleich zu den vielen Ländern, die ihre thermischen Ressourcen zur Wärmeproduktion einsetzen, gering ist, ist ein weiterer Zuwachs prognostiziert.

Abbildung 10: Anlagen zur geothermischen Stromerzeugung weltweit (Quelle: ThinkGeoEnergy).
3.2.2. Europa

In der Türkei wurden seit Beginn der geothermischen Exploration in den 1960er Jahren 460 aussichtsreiche Felder identifiziert und ein hydrothermales Potenzial von 4.500 MWe elektrischer Leistung abgeschätzt. Seit 2015 wurden 200 Produktionsbohrungen und 90 Injektionsbohrungen abgeteuft, was nach Angaben des EGEC Market Reports zu einer Steigerung der installierten Leistung auf 1688 MWe führte, Huttner beziffert die installierte Leistung auf 1549 MWe. Damit war die Türkei in den vergangenen Jahren der weltweit größte Wachstumsmarkt geothermischer Stromproduktion. Der Erkundung der petrothermalen Ressourcen wurde große Aufmerksamkeit gewidmet, und die Bohrungen sind bis in eine Tiefe von 4.500 Metern vorgedrungen, wo Temperaturen von über 295 °C gemessen wurden. Das Potenzial wird auf etwa 20.000 MWe geschätzt. 2021 wurde die staatlich garantierte Einspeisevergütung von US-Dollar auf türkische Lira umgestellt und um bis zu 36 Prozent abgesenkt. Als Obergrenze wurden 0,086 USD pro KWh festgelegt. Es bleibt abzuwarten, wie sich
diese geänderten Rahmenbedingungen auf die weitere Marktentwicklung auswirken (vgl. Huttrer 2021; Garabetian et al. 2020).

Island steht durch die günstigen geologischen Rahmenbedingungen bezüglich der Nutzung geothermischer Energie an der Weltspitze. 27 % der Primärenergie in Island werden geothermisch erzeugt. Es gibt sechs größere Geothermiekraftwerke, die etwa 26 % des Strombedarfs decken und...

4. Instrumente zur Marktsteuerung

4.1. Entwicklung und Anpassungen des EEG

4.1.1. EEG 2023 und EEG 2021

Die zentralen Regelungen spezifisch zur Tiefen Geothermie im EEG 2023 und 2021 belaufen sich auf die Paragrafen 3, 19, 20, 45, 53 und 100. §3 des EEG 2021 definiert die Geothermie als „Erneuerbare Energie“ im Sinne des Gesetzes. Auch in der novellierten Fassung wird die geothermische Stromerzeugung demnach für die Dauer von 20 Jahren gefördert, zuzüglich des Rest-Inbetriebnahmehalbjahres. Da Geothermieanlagen typischerweise eine installierte Leistung von mehr als 100kW aufweisen, fallen sie nicht unter die Regelung für kleine Anlagen. Demnach ist in der Regel die marktprämiengeförderte Direktvermarktung nach § 19 Abs. 1 Nrn. 1 i. V. m. § 20 EEG 2021 weiterhin die passende Vermarktungsform. Durch die im EEG 2023 beibehaltenen Änderungen im EEG 2021 lassen sich für Geothermieanlagen erfreuliche Auswirkungen erwarten. Zentral ist dabei die geänderte Degressionsregelung des § 45 Abs. 2 EEG 2021. Während nach dem EEG 2017 die Degression bereits ab dem Jahr 2021 beginnen und jährlich 5 Prozent betragen sollte, wurde die Degression im EEG 2021 gemindert und der Degressionsbeginn nach hinten verschoben. So verringert sich der anzulegende Wert gemäß § 45 Abs. 2 EEG 2021 nun erst ab dem Jahr 2024 und dann nur um lediglich 0,5 Prozent pro Jahr. Außerdem wurde das Primat der rein zeitlich gesteuerten Degression aufgebrochen und eine höhere Degression an die installierte Gesamtleistung gekoppelt. Erst wenn diese das Zubauziel von 120 MW erstmals überschreitet, steigt die Degression auf 2 Prozent pro Jahr (§ 45 Abs. 2 EEG 2021). Der Gesetzgeber geht demnach davon aus, dass bei Erreichen dieses Zubauziels durch die bis dahin verwirklichten Projekte ausreichend Erkenntnisse gewonnen wurden, welche entsprechend zu einer Kostenreduktion führen. Die neue Degressionsregelung ist ein guter Schritt für die Geothermie, da sich dadurch die Planbarkeit für Projektleiter verbessert. Um die positiven Effekte der neuen Regelung noch zu verstärken, ist jedoch eine vollständige Abkehr von
einer zeitlich gesteuerten Degression hin zur alleinigen Ausrichtung an der installierten Leistung empfehlenswert (siehe Kapitel 7.1). Der anzulegende Wert bleibt im Vergleich zum EEG 2017 unverändert bei 25,20 ct/kWh. Insgesamt bleibt die Stromerzeugung durch Geothermie bei entsprechend geeigneten Standorten langfristig attraktiv. Um den je aktuellen Stand des Zubes transparent und verlässlich darzulegen, wird die Bundesnetzagentur durch den neu eingeführten § 45 Abs. 3 EEG 2021 dazu verpflichtet, jährlich die Summe der installierten Leistung aus geothermisch betriebenen Kraftwerken zu veröffentlichen. Stichtag hierfür ist der 15.12.

Tabelle 15: Einspeisevergütung und anzulegender Wert nach dem EEG 2021

<table>
<thead>
<tr>
<th>Jahr der Inbetriebnahme</th>
<th>Anzulegender Wert</th>
<th>Einspeisevergütung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>25,20 ct/kWh</td>
<td>25,00 ct/kWh</td>
</tr>
<tr>
<td>2022</td>
<td>25,20 ct/kWh</td>
<td>25,00 ct/kWh</td>
</tr>
<tr>
<td>2023</td>
<td>25,20 ct/kWh</td>
<td>25,00 ct/kWh</td>
</tr>
<tr>
<td>2024 (Degressionsbeginn)</td>
<td>25,074 ct/kWh</td>
<td>24,875 ct/kWh</td>
</tr>
<tr>
<td>2025</td>
<td>24,948 ct/kWh</td>
<td>24,750 ct/kWh</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nach erstmalig installierter Leistung von min. 120 MW</td>
<td>-2 %</td>
<td>-2 %</td>
</tr>
</tbody>
</table>
4.1.1.1. EEG-Umlage

4.2. Weitere Steuerungsinstrumente
Neben dem EEG unterliegt die Geothermie einer Reihe weiterer Steuerungsinstrumente, auf welche im Folgenden eingegangen wird. Dabei werden zunächst die rechtlichen Rahmenbedingungen beleuchtet, bevor weitere Fördermöglichkeiten außerhalb des EEG dargelegt werden.

4.2.1. Rechtliche Rahmenbedingungen

4.2.1.1. Bergrecht

Neben Erlaubnis und Bewilligung ist eine weitere Zulassung des Geothermie-Projekts durch Betriebspläne nötig. Konkret sind fünf unterschiedliche Betriebspläne vorgesehen:

- Hauptbetriebsplan (§ 52 Abs. 1 BBergG)
- Rahmenbetriebsplan (§ 52 Abs. 2 Nr. 1 BBergG)
- Sonderbetriebsplan (§ 52 Abs. 1 Nr. 2 BBergG)
- Abschlussbetriebsplan (§ 53 Abs. 1 Satz 1 BBergG)
- gemeinschaftlicher Betriebsplan (§ 52 Abs. 3 BBergG)

In § 57c des BbergG ist auch der Erlass der Verordnung über die Umweltverträglichkeitsprüfung bergbaulicher Vorhaben (UVP-V Bergbau) angelegt. Tiefbohrungen zur Gewinnung von Erdwärme ab 1.000 m Teufe bedürfen einer Umweltverträglichkeitsprüfung (UVP), wenn (vgl. Böttcher 2014; § 1 UVP-V Bergbau):

- das Projekt in ausgewiesenen Naturschutzgebieten liegt
- das Projekt in ausgewiesenen besonderen Schutzgebieten nach der Vogelschutzrichtlinie (79/409/EWG, ABl. L 103) oder der Fauna-Flora-Habitat-Richtlinie (92/43/EWG) liegt
- das Projekt in den Erdbeebenzonen 1-3 liegt (siehe Abbildung 12)
- Fracking-Maßnahmen eingesetzt werden
- wassergefährdende Stoffe i. S. v. § 62 Abs. 3 WHG zum Einsatz kommen

Neben den genehmigungsrechtlichen Vorschriften des BbergG muss nach dem Standortauswahlgesetz (StandAG) im Rahmen der Standortsicherung für ein potenzielles atomares Endlager auch das Bundesamt für kerntechnische Entsorgungssicherheit sein Einvernehmen mit Geothermie-Bohrungen als Bohrlochbergbauaktivitäten nach § 21 StandAG geben.

4.2.1.2. Wasserrechtliche Normen

Abbildung 12: Karte der Erdbebenzonen in Deutschland (Quelle: DIN Deutsches Institut für Normung e.V.).
Grundwasser gemäß § 9 Abs. 1 Nr. 5 WHG sowie die Reinjektion gemäß § 9 Abs. 1 Nr. 4 WHG dar. Gemäß § 9 Abs. 1 Nr. 4 WHG stellt bereits die Niederbringung einer Bohrung eine solche Gewässerbenutzung dar. Für Petrothermale Systeme kann zusätzlich eine unechte Benutzung des Grundwassers gemäß § 9 Abs. 2 WHG festgestellt werden. Demnach kann tiefen Geothermie-Projekten gemäß § 14 Abs. 1 Nr. 3 WHG keine Bewilligung erteilt werden, sondern lediglich eine Erlaubnis, welche nach § 18 Abs. 1 WHG jederzeit widerrufen werden kann. Gemäß § 19 Abs. 2 WHG entscheidet die Bergbehörde über die Erteilung einer solchen Erlaubnis, wenn der Betriebsplan die Benutzung von Gewässern vorsieht.

4.2.1.3. Baurecht

4.2.1.4. Immissionsschutzrecht

4.2.1.5. Geologiedatengesetz
4.2.2. Förderung

4.2.2.1. Bundesförderung für effiziente Wärmenetze

Die BEW umfasst folgende Module:

- Modul 1: Förderung von Transformationsplänen oder Machbarkeitsstudien,
- Modul 2: Systemische Förderung eines Wärmenetzes (Investitionsförderung),
- Modul 3: Förderung von Einzelmaßnahmen an einem Wärmenetz
- Modul 4: Betriebskostenförderungen für Solarthermieanlagen und Wärmepumpen

Im Bereich der Geothermie werden geothermale Anlagen zur Wärmeerzeugung, die in Wärmenetze einspeisen, als Element einer systemischen Förderung (basierend auf einer Machbarkeitsstudie oder einem Transformationsplan) gefördert. Die Förderung für geothermische Anlagen umfasst geologische, hydrologische oder seismische Voruntersuchungen, Erkundungen, Injektions- sowie Förderbohrungen und auch die Baustelleneinrichtung und Tiefbauarbeiten. Förderfähig sind ausschließlich geothermische Anlagen zur Wärmeerzeugung.

Voruntersuchungen sind im Rahmen der Förderung von Modul 1 (Transformationspläne und Machbarkeitsstudien) förderfähig. Der Zuschuss beträgt 50 % mit einem Maximalbetrag von 2 Millionen Euro. Die systemische Förderung in Modul 2 erfolgt ebenfalls als Zuschuss beträgt maximal 40 % der Investitionskosten. Die Förderhöchstgrenze liegt bei 100 Millionen Euro pro Antrag.

4.2.2.2. Bundesförderung für Energie- und Ressourceneffizienz in der Wirtschaft
Förderfähig sind Machbarkeitsstudien zur geothermischen Potenzialermittlung sowie die Errichtung und Inbetriebnahme von Anlagen zur Erschließung von Geothermie.

Förderung von Machbarkeitsstudien

Die Förderung von Machbarkeitsstudien kann separat beantragt werden oder aber im Rahmen der Realisierung einer Geothermie-Anlage (siehe „Förderung der Errichtung und Inbetriebnahme von Anlagen zur Erschließung von Geothermie-Anlagen“).

Neben geologischen, hydrologischen und/oder seismischen Erkundungen und ingenieur- und naturwissenschaftlichen Verfahren kann im Rahmen der Machbarkeitsstudie auch Folgendes mitgefordert werden:

- Klärung und Zusammenstellung rechtlicher und weiterer Rahmenbedingungen,
- Kostenermittlung und/oder Kostenschätzung für die Errichtung einer geothermischen Anlage,
- Abschätzung des Zeitbedarfs für die Errichtung einer geothermischen Anlage,
- Erstellung von Wirtschaftlichkeitsbetrachtungen für die Errichtung und den Betrieb einer Geothermie-Anlage.

Förderung der Errichtung und Inbetriebnahme von Anlagen zur Erschließung von Geothermie-Anlagen

Die Förderung der Errichtung und Inbetriebnahme von Anlagen zur Erschließung von Geothermie kann Folgendes umfassen:

- Machbarkeitsstudien (siehe oben),
- Planungsleistungen,
- Baustelleneinrichtungen,
- Erdbohrungen,
- Errichtung von Erdwärme-Kollektoren/-Sonden(feldern)/-brunnen und hydrothermalen Systemen zur Erschließung der Geothermie,
- Bauliche Maßnahmen, die erforderlich sind, um die geothermische Anlage zu errichten und in den Regelbetrieb zu nehmen,
- Technische Einbindung der geothermischen Anlage in den Unternehmensstandort,
- Technik zur Hebung des Energieniveaus.

Die Förderung erfolgt in Form der Anteilsfinanzierung entweder durch einen nicht rückzahlbaren Zuschuss oder in Form eines Teilschuldenerlasses (Tilgungszuschuss) aus Mitteln des BMWK für Kredite, die die KfW refinanziert. Der maximal mögliche Förderzuschuss beträgt 15 Millionen € pro Vorhaben.
4.2.2.3. Forschungsförderung

- Demonstrations- und Pilotvorhaben
- Weiterentwicklung der Technologie
- Weiterentwicklung von Wärme- und Kältespeichern
- Ausbau der geologischen Datenbasis
- Sicherheitsaspekte und Risikominimierung
- Forschung zur stofflichen Nutzung und Verwertung geförderter geothermischer Fluide und Rückstände

Neben der Förderung durch den Bund ist auch die EU-Förderung von Forschung und Entwicklung durch das Programm Horizon 2020 zu nennen (siehe Kapitel 3.2.2).
5. Ökonomische Aspekte

Aufgrund eines zusätzlichen Altersstrukturwandels innerhalb der genannten Industrien ist die Bohrindustrie in einem weiten Bereich auf Quereinsteiger aus anderen Berufsgruppen angewiesen, da es z. B. keinen Ausbildungsberuf „Tiefbohrer“ gibt.

Im Bereich des nördlichen Oberrheingrabens könnte es zudem zu einer Nutzungskonkurrenz zwischen Gebieten für Tiefe Geothermie und der Gas- und Ölförderung mittels Frackings kommen – was den Ausbau der Tiefen Geothermie ebenfalls behindern würde.

Die Kapazitäten für die Durchführung von Genehmigungsverfahren bei den Bergämtern sind sehr begrenzt. Bereits durch die leicht gestiegene Nachfrage nach Genehmigungen durch einige Tiefe-Geothermie-Projekte im Oberrheingraben sehen sich die Bergämter nicht in der Lage, die benötigten Genehmigungen in Zeiträumen zu erstellen, die für die Projekte akzeptabel sind. Auch hier fehlt es an
bergrechtlich erfahrenem und unterstützenem Personal und kurzfristig ist nicht damit zu rechnen, dass sich die Lage bessert.

5.1. Anlagenbezogene Kosten
Bedingt durch die Corona-Pandemie und die bis Ende 2022 herrschende Null-Covid-Strategie der chinesischen Regierung sind die Lieferketten in vielen Bereichen beeinträchtigt. Der Ukraine-Krieg und die daraus resultierenden Folgen haben ebenfalls einen erheblichen Anteil an den Lieferkettenproblemen. Für viele Produkte werden nur Angebote mit sehr kurzer Gültigkeit, einer Indizierung auf bestimmte Beschaffungsmärkte oder erheblichen Aufschlägen herausgegeben, was zusammen mit der allgemeinen Inflation zu Kostensteigerungen führt. Das Projektrisiko auf Investitionsebene erhöht sich durch all diese Punkte deutlich.

5.2. Kosten der Stromerzeugung
Ein Marktteilnehmer hat eine detaillierte Studie zu den Kraftwerks- und Bohrkosten im derzeitigen Marktumfeld in Auftrag gegeben, die auch für diesen Bericht kurz vor Fertigstellung dieses Berichtes zur Verfügung gestellt wurde.

5.2.1. Kostensteigerung in allen Bereichen

5.2.1.1. Stromeinkauf

86
Unsicherheit bei den Stromlieferanten ausdrückt. Diese Verunsicherung ist an der EEX nicht mehr zu erkennen und die Strompreise haben sich bei deutlich geringeren Preisen eingependelt.

5.2.2. Kostensenkung
Auf Seiten der Kostensenkung kann nur die Streichung der EEG-Umlage angeführt werden. Die Stromkosten reduzierten sich für die Projekte durch den Wegfall der EEG-Umlage, vgl. 4.1.1.1.

5.3. Ermittlung der Stromgestehungskosten
Um die Stromgestehungskosten mit Realdaten durchführen zu können, wurden wie in vorangegangenen Berichtszeiträumen sowohl bestehende als auch in Bau und Planung befindliche Geothermieanlagen mit Stromerzeugung angeschrieben und um die Abgabe eines Fragebogens gebeten. Der Fragebogen wurde im Vergleich zu vorherigen Fragebögen nicht überarbeitet, um zielgenau die Eingangsparameter für das übergeordnete Berechnungstool abzufragen und die Betreiber gleichzeitig mit so wenig Fragen wie möglich zu konfrontieren, um den Rücklauf zu erhöhen.

Insgesamt wurden die in der folgenden Tabelle aufgeführten 10 Projekte angeschrieben.

Tabelle 16: Angefragte Geothermieanlagen

<table>
<thead>
<tr>
<th></th>
<th>Angefragte Geothermieanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bruchsal</td>
</tr>
<tr>
<td>2</td>
<td>Dürrnhaar</td>
</tr>
<tr>
<td>3</td>
<td>Garching a. d. Alz</td>
</tr>
<tr>
<td>4</td>
<td>Grünwald</td>
</tr>
<tr>
<td>5</td>
<td>Holzkirchen</td>
</tr>
<tr>
<td>6</td>
<td>Insheim</td>
</tr>
<tr>
<td>7</td>
<td>Kirchstockach</td>
</tr>
<tr>
<td>8</td>
<td>Landau</td>
</tr>
<tr>
<td>9</td>
<td>Sauerlach</td>
</tr>
<tr>
<td>10</td>
<td>Traunreut</td>
</tr>
</tbody>
</table>
Für die Ermittlung der Stromgestehungskosten 2021 standen leider weniger Daten zur Verfügung als in den letzten Berichtszeiträumen: Lediglich Insheim, Garching a. d. Alz und Traunreut haben die Fragebögen ausgefüllt, eine höhere Anzahl konnte trotz intensiver Nachfrage nicht erreicht bzw. vom Nutzen der Datenweitergabe überzeugt werden: Gründe hierfür sind der hohe Aufwand für die Datenerhebung sowie die Scheu der meisten Betreiber, sensible Betriebsdaten herauszugeben.

Für diesen Berichtszeitraum wurden die gleichen Berechnungsgrundlagen, wie in den vorangegangenen verwendet:

Tabelle 17: Berechnungsgrundlagen Stromgestehungskosten

| Berechnungsgrundlagen |
|--------------------------------|----------------|
| Kalkulationszinssatz | 9,3 % |
| Kalkulatorische Nutzungsdauer | 20 |
| Strompreisänderungsrate | 1,5 % |
| Allgemeine Preisänderungsrate | 4,00 % |
Tabelle 18: Nutzungsdauer der Anlagenkomponenten

<table>
<thead>
<tr>
<th>Nutzungsdauer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpen</td>
<td>5 Jahre</td>
</tr>
<tr>
<td>Planungen, Untersuchungen</td>
<td>20 Jahre</td>
</tr>
<tr>
<td>Anlagen Stromerzeugung</td>
<td>20 Jahre</td>
</tr>
<tr>
<td>Anlagen Wärmeerzeugung (ohne Netz)</td>
<td>30 Jahre</td>
</tr>
<tr>
<td>Thermalwasserkreislauf</td>
<td>30 Jahre</td>
</tr>
<tr>
<td>Thermalwassertrasse</td>
<td>30 Jahre</td>
</tr>
<tr>
<td>Untertägige Kosten</td>
<td>50 Jahre</td>
</tr>
<tr>
<td>Wärmeerzeugung (Netz)</td>
<td>50 Jahre</td>
</tr>
</tbody>
</table>

Das Projekt B verzeichnete sowohl in der Erhebung für 2021 als auch für 2022 einen Anstieg der Stromgestehungskosten. Dies ist vor allem auf die im Vergleich zu 2018 gestiegenen Strombezugskosten zurückzuführen, die für das Jahr 2021 bei ca. 150 % und für das Jahr 2022 bei ca. 300 % des Vergleichswertes liegen. Sonstige Kosten sind für das Projekt B nur geringfügig gestiegen.

Eine genauere Betrachtung ist hier aufgrund von unvollständigen Daten nicht möglich.
Die Projekte A und B sind unter anderen Bezeichnungen in der folgenden Grafik enthalten.

Abbildung 14: Investitionskostenverteilung (Quelle: Vulcan Energy Engineering).

Auch im Hinblick auf die Bohrkosten konnten gegenüber dem Bericht von 2018 keine neuen Erkenntnisse gewonnen werden. Hier liegen keine neuen Daten vor.

Abbildung 15: Investitionskosten Bohrungen (Quelle: Vulcan Energy Engineering).

Die Datensituation kann sich zum nächsten Bericht ändern, da zum Zeitpunkt der Berichtserstellung weitere Strom-Projekte im Oberrheingraben durchgeführt werden.
5.4. Vermarktungsmöglichkeiten und Marktintegration

Die Vermarktungsmöglichkeiten für tiefengeothermische Projekte haben sich in den letzten Monaten (Stand Juni 2023) dramatisch geändert. Bedingt durch die Tatsache, dass die Tiefe Geothermie in der Lage ist, planbar erneuerbaren Strom sowie erneuerbare Wärme zu liefern, rückt die Technologie in den Fokus der Wirtschaft unter den Aspekten der Versorgungssicherheit, Kalkulier- und Planbarkeit für die Produktion. Aus Sicht der Berichtsverfasser ist eine Trennung von Strom und Wärme für die weitere Betrachtung der Vermarktungsmöglichkeiten nur bedingt zielführend.

Eine Vielzahl von Gesprächen mit führenden Wirtschaftsunternehmen konnte in den vergangenen Monaten zu diesen Themenkomplexen geführt werden.

Interessanterweise haben weniger klassische Stromversorger, sondern Wirtschaftsunternehmen und Wärmeversorger direkt Kontakt mit potenziellen Geothermie-Projektentwicklern aufgenommen und somit das Heft des Handelns direkt in die Hand genommen.

Aus den Gesprächen wurde deutlich, dass die Bedeutung der Tiefen Geothermie bei den Unternehmen in der Reihenfolge Wärme (Kälte) und dann Strom liegt. Für die Versorgung mit CO₂-freiem Strom sehen die Mehrzahl der Unternehmen auch andere Möglichkeiten.

Tiefe-Geothermie-Projekte, die rein durch die Lithiumförderung getrieben sind, werden eine Stromerzeugungsanlage in jedem Falle errichten, wenn die dafür erforderlichen Temperaturen vorhanden sind. In diesem Falle kann sogar von einer geringeren Temperaturschwelle zur Entscheidung zur Errichtung eines Kraftwerks ausgegangen werden, da, basierend auf der derzeitigen Technologie, nur abgekühltes Thermalwasser mit einem Temperaturniveau von ca. 65 – 85 °C für die Lithiumextraktion verwendet werden kann. Es ist somit erforderlich, das Thermalwasser von der Fördertemperatur auf die Verarbeitungstemperatur abzusenken. Hierfür bietet sich neben der direkten Wärmenutzung vor allem die Stromerzeugung an, da auch die Extraktionsprozesse Strom benötigen.

Umsetzung kommen, hängt maßgeblich von den Entwicklungen in der nächsten Zeit und den Risikobewertungen der entsprechenden Abteilung ab. Diese Situation öffnet auch Chancen für andere Unternehmen, die sich auf die Entwicklung von Tiefen-Geothermie-Projekten fokussiert haben.

Die Forderung an die Amortisationszeit, die von den Wirtschaftsunternehmen teilweise geäußert wurden, sind im Bereich der Energiewirtschaft nicht erreichbar. Investitionen in der Energiewirtschaft sind auf bedeutend längere Zeiträume ausgelegt. Es ist weiter zu bedenken, dass die Energiebereitstellung nicht zu den Kerngeschäften und -kompetenzen der Unternehmen gehört, was wiederum Marktchancen für Dienstleister eröffnet, die im Nachgang diesen Bereich wieder übernehmen können.

Ein wichtiger Aspekt für die Unternehmen mit Fokus auf Stromerzeugung ist es, eigene Bilanzkreise für die Strombilanzierung zwischen Erzeugern und Verbrauchern bei örtlicher Verteilung mit einer geringen Belastung von Umlagen und Steuern zu haben.

5.5. Besonderheiten der Geothermie

Unter diesem Punkt sollen nachfolgend die Besonderheiten der Geothermie in Bezug auf die ökonomischen Aspekte aufgeführt werden. Diese liegen vor allem in der vielseitigen Einsetzbarkeit der Erdwärme begründet.

5.5.1. Kraft-Wärme-Kopplung

5.5.2. Kaskadennutzung

5.5.3. Geothermische Lithiumgewinnung

Bei der Flüssig-Flüssig Extraktion kommt ein flüssiges Lösungsmittel zum Einsatz. Dies muss so beschaffen sein, dass es sich nicht mit dem Thermalwasser mischt, bei Kontakt jedoch den zu extrahierenden Stoff austauscht. Vielversprechende Ansätze für die Lithiumextraktion aus salzhaltigen Wässern und entsprechend für die geothermische Lithiumgewinnung sind der Einsatz von Tributylphosphaten (TBP) verdünnt mit Methylisobutylketon oder Kerosin, von Kronenethern oder von ionischen Flüssigkeiten (vgl. ebd.).
Das Grundprinzip für die Extraktion unter Verwendung anorganischer Sorbentia beruht auf Ionenaustausch und Sorption. Das Fluid wird mit einem Feststoff in Kontakt gebracht, wobei sich der gelöste Rohstoff an ihn bindet. Anschließend muss der Rohstoff aus der Sorbens rückgelöst werden. Hierfür kann die Durchflusszelle entweder direkt behandelt werden oder der Feststoff muss zunächst abfiltriert werden. Titanoxide, Manganoxide, Aluminiumhydroxide oder Zeolithe sind einige Materialien, die derzeit zur selektiven Ionenabscheidung erforscht werden. Forschungsschwerpunkt ist dabei typischerweise die Leistungsoptimierung der Adsorber mit Blick auf ihre Adsorptionskapazität und Wiederverwendbarkeit. Die unterschiedlichen Adsorber und deren Funktion sind im Labormaßstab bereits sehr gut erforscht und konnten gute Testergebnisse erzielen, wobei auch mit tatsächlichen Thermalwässern getestet wurde. Vor allem Aluminiumhydroxide scheinen nach erfolgreichen Feldtests geeignet für die geothermische Anwendung (vgl. ebd.).

Eine weitere Methode zur Lithiumextraktion sind Membranotechnologien. Sie basieren auf dem Einsatz von auf Lithium ausgelegten selektiven Membranen. Hier können die Ionengröße, die Oberflächenladung, oder chemische und physikalische Eigenschaften ausschlaggebend für den Trennungsmechanismus sein. Es existiert eine große Vielfalt an verschiedenen Membranotechnologien. Dabei kann die Membran entweder selbst die Trennung hervorrufen, oder als Träger für Lösungsmittel oder Sorbentia fungieren (vgl. ebd.).

Abschließend lässt sich sagen, dass eine erfolgreiche kommerzielle Lithiumextraktion aus Thermalwasser das Risiko-Rendite-Verhältnis für Geothermie-Projekte in den Regionen des Oberrheingrabens und des Norddeutschen Beckens deutlich positiv beeinflussen kann. Sogar dahingehend, dass aus ökonomischer Perspektive die Lithiumgewinnung bei einzelnen Projekten im Vordergrund stehen kann. Es kann außerdem deutlich mehr Kapital in den Markt gezogen werden, was sich wiederum auf die Technologieentwicklung und weitere Verbesserung der Wirtschaftlichkeit von Geothermie im Allgemeinen auswirkt.
6. Weitere Aspekte

In diesem Kapitel sollen weitere im bisherigen Bericht noch nicht berücksichtigte Aspekte der Tiefen Geothermie in den Blick genommen werden. Während der Fokus zunächst auf ökologische Aspekte und im Anschluss auf Akzeptanzfragen gelegt wird, werden unter Kapitel 6.3 alle weiteren Punkte behandelt, die relevant für den Ausbau der Tiefen Geothermie in Deutschland sind.

6.1. Ökologische Aspekte

Tiefe Geothermie stellt wie jede Technologie einen Eingriff in die Umwelt dar. Zwar weisen Erneuerbare Energien eine deutlich bessere ökologische Bilanz als fossile Energieträger auf, dennoch spielen auch Umwelteffekte eine Rolle bei der Betrachtung Tiefer Geothermie. Vor diesem Hintergrund werden nachfolgend ausgewählte ökologische Aspekte geothermischer Stromerzeugung diskutiert.

6.1.1. Emissionsbilanz

Die Studie „Emissionsbilanz erneuerbarer Energien – Bestimmungen der vermiedenen Emissionen 2020“ des Umweltbundesamtes ermittelt, wie sich die Emissionsvermeidung durch die Nutzung erneuerbarer Energien in den Sektoren Strom, Wärme und Verkehr darstellt. Dafür wird ein konfrontatives Szenario erstellt, welches den realen europäischen Strommarkt inklusive der derzeitige Substitution fossiler Energieträger durch Erneuerbare Energien mit einem fiktiven Strommarkt vergleicht, in dem keine Erneuerbare Energieproduktion in Deutschland als Annahme vorausgesetzt wird. Methodisch werden die Netto-Emissionen in den Blick genommen, d.h.: die durch die Energiebereitstellung aus erneuerbaren Energien verursachten Emissionen beispielsweise durch vorgelagerte Prozessketten oder den Eigenverbrauch der Anlagen fließen in die Ergebnisse ein. Insgesamt wurden im Jahr 2020 ca. 230 Mio. t CO₂-Äquivalente vermieden (vgl. Lauf et al. 2021). Eine Analyse der Substitutionsfaktoren für geothermische Stromerzeugung ergab, dass Strom aus Tiefengeothermie hauptsächlich Steinkohlekraftwerke (63,8 %) und in etwas geringerem Umfang auch Braunkohle- (18,1 %) und Erdgaskraftwerke (17,6 %) ersetzt. Hinzu kommt ein verschwindend geringer Anteil an Kernenergie (0,2 %) (vgl. ebd.). Bezüglich der verursachten Emissionen unterscheidet die Studie in drei Lebenszyklusphasen (vgl. ebd.):

- Errichtung (Bohrung, Bohrungsausbau und obertägige Anlage)
- Betrieb der geothermischen Anlage
- Rückbau (in der Bilanzierung nicht explizit berücksichtigt)

In der Errichtungsphase sind vor allem die Bohrung sowie Materialaufwendungen in Form von Beton und Stahl die Bereiche in denen Emissionen verursacht werden.

<table>
<thead>
<tr>
<th></th>
<th>CO₂-Äq.</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>SO₂-Äq.</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>Staub</th>
<th>CO</th>
<th>NMVO C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkette</td>
<td>7,026</td>
<td>6,693</td>
<td>0,012</td>
<td>0,000</td>
<td>0,015</td>
<td>0,004</td>
<td>0,015</td>
<td>0,005</td>
<td>0,053</td>
<td>0,001</td>
</tr>
<tr>
<td>Direkte</td>
<td>0,000</td>
</tr>
<tr>
<td>Hilfsenergie</td>
<td>137,536</td>
<td>128,400</td>
<td>0,267</td>
<td>0,008</td>
<td>0,180</td>
<td>0,072</td>
<td>0,155</td>
<td>0,007</td>
<td>0,097</td>
<td>0,008</td>
</tr>
<tr>
<td>Gesamt</td>
<td>144,562</td>
<td>135,093</td>
<td>0,279</td>
<td>0,008</td>
<td>0,195</td>
<td>0,076</td>
<td>0,170</td>
<td>0,012</td>
<td>0,151</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Neben den Ergebnissen zur geothermischen Stromerzeugung ermittelt die UBA-Studie außerdem die Netto-Emissionsbilanz der Wärmebereitstellung aus Tiefengeothermie. Hier wurden ca. 383 kt CO₂-Äq. Treibhausgasemissionen vermieden, bei einem spezifischen Treibhausgas-Vermeidungsfaktor von 280 g/kWhth CO₂-Äquivalent. In Hinblick auf versauernd wirkende Luftschadstoffe sowie weitere Schadstoffe (Staub, Kohlenmonoxid und flüchtige organische Verbindungen) trägt die geothermische Wärmebereitstellung erheblich zur Entlastung bei (vgl. ebd.).

Tabelle 20: Emissionsbilanz geothermischer Stromerzeugung (vgl. ebd.).

<table>
<thead>
<tr>
<th></th>
<th>brutto vermiedene Emissionen</th>
<th>verursachte Emissionen</th>
<th>netto vermiedene Emissionen</th>
<th>Netto-Vermeidungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[g/kWh]</td>
</tr>
<tr>
<td>CO₂-Äq.</td>
<td>188.185</td>
<td>33.376</td>
<td>154.809</td>
<td>670,52</td>
</tr>
<tr>
<td>CO₂</td>
<td>177.820</td>
<td>31.190</td>
<td>146.630</td>
<td>635,10</td>
</tr>
<tr>
<td>CH₄</td>
<td>374</td>
<td>64</td>
<td>310</td>
<td>1,34</td>
</tr>
<tr>
<td>N₂O</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>SO₂-Äq.</td>
<td>206</td>
<td>45</td>
<td>162</td>
<td>0,70</td>
</tr>
<tr>
<td>SO₂</td>
<td>82</td>
<td>18</td>
<td>64</td>
<td>0,28</td>
</tr>
<tr>
<td>NOₓ</td>
<td>179</td>
<td>39</td>
<td>140</td>
<td>0,61</td>
</tr>
<tr>
<td>Staub</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>0,02</td>
</tr>
<tr>
<td>CO</td>
<td>41</td>
<td>35</td>
<td>6</td>
<td>0,03</td>
</tr>
<tr>
<td>NMVOC</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Tabelle 21: Emissionsbilanz geothermischer Wärmeproduktion (vgl. ebd.).

<table>
<thead>
<tr>
<th></th>
<th>brutto vermiedene Emissionen</th>
<th>verursachte Emissionen</th>
<th>netto vermiedene Emissionen</th>
<th>Netto-Vermeidungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[g/kWh]</td>
</tr>
<tr>
<td>CO₂-Äq.</td>
<td>427.049</td>
<td>44.161</td>
<td>382.887</td>
<td>279,50</td>
</tr>
<tr>
<td>CO₂</td>
<td>385.851</td>
<td>41.401</td>
<td>344.451</td>
<td>253,45</td>
</tr>
<tr>
<td>CH₄</td>
<td>1.547</td>
<td>83</td>
<td>1.464</td>
<td>1,07</td>
</tr>
<tr>
<td>N₂O</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0,00</td>
</tr>
<tr>
<td>SO₂-Äq.</td>
<td>485</td>
<td>64</td>
<td>421</td>
<td>0,31</td>
</tr>
<tr>
<td>SO₂</td>
<td>209</td>
<td>23</td>
<td>186</td>
<td>0,14</td>
</tr>
<tr>
<td>NOₓ</td>
<td>397</td>
<td>58</td>
<td>338</td>
<td>0,25</td>
</tr>
<tr>
<td>Staub</td>
<td>86</td>
<td>8</td>
<td>79</td>
<td>0,06</td>
</tr>
<tr>
<td>CO</td>
<td>204</td>
<td>93</td>
<td>111</td>
<td>0,08</td>
</tr>
<tr>
<td>NMVOC</td>
<td>55</td>
<td>3</td>
<td>52</td>
<td>0,04</td>
</tr>
</tbody>
</table>
6.1.2. Lokale Umwelteffekte

In allen Phasen eines Geothermie-Projekts treten auch lokale Umwelteffekte auf. Im Folgende sollen diese zunächst allgemein beleuchtet werden, bevor die Themenbereiche induzierte Seismizität sowie natürliche Radioaktivität gesondert behandelt werden.

6.1.2.1. Allgemein

Abbildung 16: Lokale Umwelteffekte eines Geothermie-Projekts.

seismischer und weiterer geophysikalischer, geologischer und geochemischer Vorerkundungsinstrumente nötig.

Die Stimulation von Festgestein, wie sie für petrothermale Geothermie nötig ist, ist anders als die Stimulation von Sedimentgestein nach wie vor eine neuartige Technologie mit wenigen Erfahrungen aus der Praxis. Auch können hier die Erfahrungen der Kohlenwasserstoff-Erschließung nicht uneingeschränkt übernommen werden. Weiterer Forschungsbedarf besteht demnach besonders in Bezug auf die noch ungenauen Kenntnisse über den natürlichen Spannungszustand im Untergrund sowie dessen Beeinflussung durch die Stimulationsmaßnahmen. Um abzuschätzen, wie hydraulische Parameter bei der Stimulation angepasst werden müssten, könnte eine spezifische Anpassung des Prinzips des kontrollierten Betriebs (siehe Kapitel 2.2.3.5) auf die Phase der Stimulation ausgeweitet bzw. angewandt werden, indem beispielsweise ein festgelegtes Schema („Ampelsystem“) zur Anwendung kommt. Mögliche Abstufungen wären Grün als unveränderte Fortsetzung der Stimulation, Gelb als Indikator für ein notwendiges Absenken der Flussrate und Rot als Signal zur Beendigung der Stimulation. Die Risiken induzierter Seismizität durch Stimulationsmaßnahmen halten Experten für beherrschbar, dennoch können Schadbeben nicht kategorisch ausgeschlossen werden (vgl. Plenefisch et al. 2015).

Insgesamt kommt auch eine Studie der BGR im Auftrag des Umweltbundesamts zu der Einschätzung, dass Tiefe Geothermie keine unbeherrschbaren Risiken für die Umwelt birgt (vgl. Plenefisch et al. 2015).

6.1.2.2. Induzierte Seismizität

Wie bereits unter Kapitel 2.2.3.5 dargelegt, beschreibt induzierte Seismizität diejenigen seismischen Ereignisse, die infolge menschlicher Eingriffe in die Umwelt ausgelöst werden, und ist demnach von Phänomenen natürlich auftretender Seismizität zu unterscheiden. Auch bei Tiefer Geothermie kann es zu induzierter Seismizität kommen, wobei typischerweise natürliche Seismizität getriggert wird und demnach natürliche Ereignisse, die ohnehin auftreten würden, bereits früher vorkommen (vgl. Bauer et al. 2014). Für weitere Ausführungen zu Ursachen tiefenkoalthermisch induzierter Seismizität und zur technischen Risikominimierung ist auf genanntes Kapitel 2.2.3.5 zu verweisen. An dieser Stelle sollen stattdessen die Auswirkungen induzierter Seismizität als lokale Umwelteffekte behandelt werden.

Prinzipiell kann zwischen großen und kleinen seismischen Ereignissen unterschieden werden, wobei zwischen den beiden Randkategorien viele Größenordnungen liegen können. Um dieser Kontingenz Rechnung zu tragen, wird die Bebenstärke als Magnitude angegeben. Die älteste Magnitudenskala für Nahbeben ist die sogenannte Richterskala und beruht auf dem festgestellten Zusammenhang zwischen dem Maximalausschlag im regionalen Seismogramm in Abhängigkeit von der Entfernung vom Epizentrum und der Magnitude (M_L). Da moderne digitale Seismografen über 1000-mal kleinere...
<table>
<thead>
<tr>
<th>EMS-Stufe</th>
<th>Definition</th>
<th>Beschreibung der maximalen Wirkung (verkürzt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>nicht fühlbar</td>
<td>Nicht fühlbar.</td>
</tr>
<tr>
<td>II</td>
<td>kaum bemerkbar</td>
<td>Nur sehr vereinzelt von ruhenden Personen wahrgenommen.</td>
</tr>
<tr>
<td>III</td>
<td>schwach</td>
<td>Von wenigen Personen in Gebäuden wahrgenommen. Ruhende Personen fühlen ein leichtes Schwingen oder Erschüttern.</td>
</tr>
<tr>
<td>IV</td>
<td>deutlich</td>
<td>Im Freien vereinzelt, in Gebäuden von vielen Personen wahrgenommen. Einige Schlafende erwachen. Geschirr und Fenster klirren, Türen klapern.</td>
</tr>
<tr>
<td>VIII</td>
<td>schwere Gebäudebrände</td>
<td>Viele Personen verlieren das Gleichgewicht. An vielen Gebäuden einfacher Bausubstanz treten schwere Schäden auf; d. h. Giebelteile und Dachsimse stürzen ein. Einige Gebäude sehr einfacher Bauart stürzen ein.</td>
</tr>
<tr>
<td>X</td>
<td>sehr zerstörend</td>
<td>Viele gut gebaute Häuser werden zerstört oder erleiden schwere Beschädigungen.</td>
</tr>
<tr>
<td>XI</td>
<td>verwüstend</td>
<td>Die meisten Bauwerke, selbst einige mit gutem erdbebensicherem Konstruktionsentwurf und -ausführung, werden zerstört.</td>
</tr>
<tr>
<td>XII</td>
<td>vollständig verwüstend</td>
<td>Nahezu alle Konstruktionen werden zerstört.</td>
</tr>
</tbody>
</table>

Bei der Betrachtung induzierter Seismizität im Hinblick auf lokale Umwelteffekte ist prinzipiell die Intensität entscheidend.

6.1.2.3. Natürliche Radioaktivität

Wie bereits unter Kapitel 2.2.3.4.2 beschrieben, kann im Falle hochmineralisierter Thermalwässer bei Untertage offenen Systemen natürliche Radioaktivität auftreten, wie dies auch aus der Erdöl- und Erdgasförderung bekannt ist. Dies trifft nach derzeitigem Kenntnisstand auf die geothermischen Regionen des Norddeutschen Beckens sowie des Oberheingrabens zu. Im Bayerischen Molassebecken sind die gemessenen Werte vernachlässigbar. Nochmals zum Rekurs: Die natürlichen Radionuklide Radium-226 (226Ra; T1/2 = 1600 Jahre, 238U-Zerfallsreihe), Radium-228 (228Ra T1/2 = 5,75 Jahre, 232Th-Zerfallsreihe), Radium-224 (224Ra; T1/2 = 3,7 Tage, Thorium-232-Zerfallsreihe), Blei-210 (T1/2 = 20,4 Jahre, 238U-Zerfallsreihe) und 40K (T1/2 = 1,3 Milliarden Jahre) können im Thermalwasser vorkommen (vgl. Degering et al. 2016). Die geförderten Tiefenwässer – und somit auch die darin gelösten Radionuklide – durchlaufen ein geschlossenes System und werden demnach ohne Umweltauswirkung wieder in den Untergrund geleitet. Allerdings kann es beispielsweise durch eine Änderung der thermodynamischen Parameter des Thermalwassers beim Durchgang durch verschiedene Anlagenkomponenten und bei verschiedenen Wechselwirkungen mit den unterschiedlichen Materialien zu Ablagerungen kommen, welche an den Oberflächen der Bauteile aufkonzentriert werden. In der Anlage in Neustadt-Glewe bestehen diese Ablagerungen hauptsächlich aus Baryt (BaSO₄), Coelestin (SrSO₄) und deren Mischkristalle, Galenit (PbS) sowie

Die anfallenden NORM-Rückstandsmaterialien aus der Geothermie sind keine „überwachungsbedürftigen Rückstände“ nach der StrlSchV. Dennoch kann eine erhöhte Strahlenexposition bei der Beseitigung nicht ausgeschlossen werden, was in der Praxis zu einer Einstufung als „sonstige Materialien“ geführt hat. Diese werden gemäß den geltenden Regularien teils deponiert, teils eingeschmolzen und teils verbrannt (vgl. ebd.).

6.1.2.4. Grundwasserschutz

Hier muss sichergestellt werden, dass keine nachteilige Veränderung erfolgt – beispielsweise durch eine Verunreinigung oder indem verschiedene Grundwasserleiter hydraulisch miteinander verbunden werden. Durch die Art des Casings mit zusätzlicher Zementierung der Zwischenräume entsteht ein Multibarrierensystem, welches eine hohe Sicherheit für die oberflächennahen,

6.2. Akzeptanz

Mit dem Themenkomplex Akzeptanz auf Projektebene haben sich neben dem Tiger-Projekt bereits weitere Forschungsvorhaben beschäftigt. Die zentralen Aussagen sollen im Folgenden dargelegt werden.

Um diese Ziele zu erreichen, sind die Bereitstellung von Information sowie Partizipationsmöglichkeiten für die Bevölkerung von großer Bedeutung (siehe Abbildung 17).
Abbildung 17: Akzeptanzschema nach TIGER (Quelle: RWTH Aachen).

Abbildung 18: Wahrgenommene Nachteile Tiefer Geothermie nach TIGER (Quelle: RWTH Aachen).

Abbildung 19: Wahrgenommene Vorteile Tiefer Geothermie nach TIGER (Quelle: RWTH Aachen).

6.3. Sonstige Aspekte

Auch die Entwicklung größerer Player innerhalb des Geothermie-Marktes kann hier als Katalysator wirken.

7. Handlungsempfehlungen

7.1. EEG-spezifisch

- Der anzulegende Wert für Strom aus Geothermie ist mit 25,2 ct/kWh beizubehalten, da es bisher zu keiner relevanten Marktbildung bzw. dem aufgezeigten Versagen des Marktes und somit auch in der Folge zu keinen kostensenkenden Effekten gekommen ist. Auf der Gegenseite sind die Kosten für die Errichtung der Projekte gestiegen.
 - Um gerade die hohen Investitions- und Anfangskosten von Geothermie-Projekten besser auffangen zu können, wäre es eine denkbare Ergänzung zur Einspeisevergütung, den Betreibern alternativ zur üblichen Laufzeit wie beim Stauchungsmodell zur Windenergie eine Verkürzung der Laufzeit, dafür aber eine entsprechende Anpassung der Vergütung anzubieten.
- Alternativ sollte die kalendergesteuerte Degressionsregelung gänzlich entfallen. Erfahrungen aus der Vergangenheit haben gezeigt, dass eine kalendergesteuerte Degression bei Tiefer Geothermie bereits 3-4 Jahre im Vorfeld dazu führt, dass keine Projekte mehr ernsthaft durchgeführt werden. Stattdessen sollte die bereits teilweise eingeführte Orientierung der Degression an konkret definierten Ausbauzielen konsequent umgesetzt
werden und die kalendergesteuerte Degression vollständig ersetzen. Die derzeitige Ausbau-
bezogene Regelung sieht eine Degression von 2 % ab einer installierten elektrischen Leistung
von 120 MW vor. Es ist zu empfehlen, diese wie folgt anzupassen:

- Kalendergesteuerte Degression entfällt
- Bei Erreichen von 120 MW installierter Leistung verringert sich der anzulegende Wert
 um 0,5 %.
- Bei Erreichen von 200 MW installierter Leistung verringert sich der anzulegende Wert
 um 2 %.
- Bei Erreichen von 300 MW installierter Leistung verringert sich der anzulegende Wert
 um 2,5 %.
- Für jede weitere 100 MW installierter Leistung verringert sich der anzulegende Wert
 um 3 %.
- Sollte der jährliche Zubau einen Wert von 60 MW überschreiten, so verringert sich der
 anzulegende Wert um weitere 2 %.

7.2. Allgemein

Insgesamt können die komplexen Herausforderungen nur durch eine enge Zusammenarbeit der
zentralen Akteure aus Politik, Wirtschaft, Wissenschaft und Kommunen bewältigt werden. An dieser
Stelle soll der Fokus auf politische Handlungsempfehlung gelegt werden. Neben dem EEG verfügt die
Politik über weitere Möglichkeiten den Ausbau der Tiefen Geothermie weiter voranzubringen. Der
Fokus sollte dabei auf einer primären Wärmenutzung hydrothermaler Geothermie liegen, wobei auch
die Förderung geothermisch erzeugten Stroms als zentraler Baustein für einen weiteren Ausbau
bleibt. Die in diesem Kapitel zusammengetragenen Handlungsempfehlungen sind demnach
außerhalb des EEG zu verorten und komplementär zu den oben aufgeführten EEG-Empfehlungen zu
betrachten.

Als übergeordnetes Instrument, welches konkrete Programme und Aktivitäten auslösen kann, sollten
zur Hebung des enormen Potenzials der Tiefen Geothermie vor allem im Wärmebereich konkrete
Ausbauleziele formuliert werden. Diese Ausbauleziele sollten ambitioniert und zeitnah für die Zeiträume
bis 2030, 2040 und 2045 vorgegeben werden. Die „Eckpunkte für eine Erdwärme-Kampagne
Geothermie für die Wärmewende“ des BMWK geben für die Mitteltiefe und Tiefe Geothermie ein Ziel
für 2030 von 10 TWh aus. Der von der Agora Energiewende formulierte Beitrag der Tiefen Geothermie
von 18 TWh für 2045 im Bericht „Klimaneutrales Deutschland 2045“ wird vom BMWK nicht
aufgegriffen. Diese Zielvorgaben sollten als Basis für weitere Förderungsmaßnahmen zum Ausbau der
erforderlichen Industrie genutzt werden können. Die Voraussetzung für den großflächigen Einsatz
von Wärmepumpen gespeist von Umweltwärme oder oberflächennaher Geothermie ist die
energetische Gebäudesanierung. Dies ist beim Einsatz von Tiefer Geothermie nicht und beim Einsatz
von Mitteltiefer Geothermie nur bedingt erforderlich, da diese Systeme deutlich höhere
Vorlauftemperaturen für Heizanlagen bereitstellen können. Hierzu sollten weiter Überlegungen
angestellt werden, welches der ökologischere und ökonomischere Ansatz ist.

Um die Potenziale der Tiefen Geothermie besser nutzen, muss auch die Datenlage deutlich verbessert werden. Zwar wurde durch die Einführung des Geologie-Datengesetzes bereits der Zugang zu bestehenden Datensätzen deutlich verbessert. In Regionen mit unzureichender geologischer Datenlage muss diese Datenlücke jedoch durch die geologischen Landesaufnahmen geschlossen werden. Hierfür sind breit angelegte Erkundungskampagnen durchzuführen, deren Ergebnisse unmittelbar verfügbar gemacht werden sollten.
8. Literaturverzeichnis

Animah, Isaac & Shafiee, Mahmood: A framework for assessment of Technological Readiness Level (TRL) and Commercial Readiness Index (CRI) of asset end-of-life strategies. 2018.

Bauer, Mathias et al. (Hrsg.): Handbuch Tiefe Geothermie. Berlin, Heidelberg. 2014.

Bundesamt für Wirtschaft und Ausführungskontrolle [BAFA] (Hrsg.): Bundesförderung für effiziente Wärmenetze – technische Anforderungen der Module 1 bis 4. Eschborn. 2023

CORDIS results pack on geothermal energy, Publications Office. 2020.

Goldberg, Valentin et. al.: Herausforderungen und Chancen für die Lithiumgewinnung aus geothermaler Systemen in Deutschland. 2021.

Karytsas, Spyridon et.al.: Study on risk insurance schemes, with corrective measures. 2021.

Online:

www.ieg.fraunhofer.de, zuletzt aufgerufen am 26.08.2022

www.swm.de, zuletzt aufgerufen am 26.08.2022

www.energate-messenger.de, zuletzt aufgerufen am 26.08.2022

www.spd.de, zuletzt aufgerufen am 26.08.2022

www.bundesnetzagentur.de, zuletzt aufgerufen am 26.08.2022

www.bundestag.de, zuletzt aufgerufen am 26.08.2022

www.v-er.eu, zuletzt aufgerufen am 26.08.2022

www.ec.europa.eu, zuletzt aufgerufen am 26.08.2022

www.thinkgeoenergy.com, zuletzt aufgerufen am 26.08.2022

www.geothermie.de, zuletzt aufgerufen am 26.08.2022

www.tiefegeothermie.de, zuletzt aufgerufen am 26.08.2022

www.umweltbundesamt.de, zuletzt aufgerufen am 26.08.2022

www.kfw.de, zuletzt aufgerufen am 26.08.2022
www.geothermie-schweiz.ch, zuletzt aufgerufen am 26.08.2022
www.unendlich-viel-energie.de, zuletzt aufgerufen am 26.08.2022
www.arena.gov.au, zuletzt aufgerufen am 26.08.2022
https://eavor-geretsried.de/, zuletzt aufgerufen am 24.07.2023